Skip to main content
  • 75 Accesses

Abstract

No one who has followed the development of the theory of beta decay could fail to be impressed with the way that beta decay, from its first, very confused appearance, gradually developed into a consistent picture and finally assumed a role of great importance in particle interactions. As is well known, beta decay is full of surprises and subtleties. Its apparent perversities have threatened us not once but twice with the abandonment of some of our cherished conservation laws. However, it seems quite clear now that the first riddle of the continuous beta spectra was just a coded clue which nature had chosen as a medium to reveal the secret of the existence of an elusive elementary particle (neutrino). Otherwise, how would this elusive, undetectable particle ever have been discovered directly? In the second crisis, when the laws of parity and charge conjugation were found separately violated in beta decay, the world of physics was shocked and puzzled. Then it again turned out that by removing these restrictions, gates were opened wide for a much better understanding of beta decay. A great advance in the theory of the neutrino (two components) immediately followed, and the possibility of a broader and deeper symmetry connecting space and electricity (CP combined inversion) thus emerged. We were all pleasantly surprised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rutherford, Phil. Mag. 28, 305 (1914). In this paper he considered the continuous spectra as due to the statistical nature of energy losses in collisions between the disintegration electrons and the outer electrons of the atom.

    Article  Google Scholar 

  2. Harkins, Journ. Amer. Chem. Soc. 42, 1956 (1920);

    Article  Google Scholar 

  3. Meitner, Zeit. f. Phys. 4, 146 (1921);

    Article  ADS  Google Scholar 

  4. Rutherford, Phil. Mag. 4, 580 (1927). They proposed that electrons do not exist in the free states in the nucleus, but α’ particles of nuclear dimensions are formed out of close combinations between two electrons and an oc particle. An α’ particle breaks up by first emitting one of its electrons and then the other. The spread of the continuous distribution is due to the difference in the energies of the stationary states occupied by the α’ particle before and after the departure of one of its electrons.

    Google Scholar 

  5. Von Baeyer and Hahn, Phys. Zeit. 11, 488 (1910).

    Google Scholar 

  6. Von Baeyer, Hahn and Meitner, Phys. Zeit. 12, 273, 378 (1911);

    Google Scholar 

  7. Von Baeyer, Hahn and Meitner, Phys. Zeit. 13, 264 (1912).

    Google Scholar 

  8. Rutherford, Robinson and Rawlinson, Phil. Mag. 28, 281 (1914).

    Article  Google Scholar 

  9. Ellis, Proc. Roy. Soc. A 99, 261 (1921);

    Article  ADS  Google Scholar 

  10. Ellis, Proc. Roy. Soc. 101, 1 (1922).

    Article  ADS  Google Scholar 

  11. Meitner, Zeit. f. Phys. 9, 131, 145 (1922).

    Article  ADS  Google Scholar 

  12. Hahn and Meitner, Zeit. f. Phys. 2, 60 (1920).

    Article  ADS  Google Scholar 

  13. Meitner, Zeit. f. Phys. 34, 807 (1925).

    Article  ADS  Google Scholar 

  14. Ellis and Wooster, Proc. Camb. Phil. Soc. 22, 844 (1926).

    Article  ADS  Google Scholar 

  15. Chadwick, Verh. d. D. Phys. Ges. 16, 383 (1914).

    Google Scholar 

  16. Chadwick and Ellis, Proc. Camb. Phil. Soc. 21, 274 (1922).

    Google Scholar 

  17. Chadwick and Ellis, Pohlmeyer, Zeit. f. Phys. 28, 216 (1924).

    Article  Google Scholar 

  18. Ellis and Wooster, Proc. Camb. Phil. Soc. 22, 859 (1925).

    ADS  Google Scholar 

  19. Aston, Proc. Camb. Phil. Soc. 22, 935 (1927).

    Article  ADS  Google Scholar 

  20. Ellis and Wooster, Proc. Roy. Soc. A117, 109 (1927).

    Article  ADS  Google Scholar 

  21. Meitner and Orthmann, Zeit f. Phys. 60, 143 (1930).

    Article  ADS  Google Scholar 

  22. Ehrenfest and Oppenheimer, Phys. Rev. 37, 333 (1931).

    Article  ADS  Google Scholar 

  23. Heitler and Herzberg, Naturwiss. 17, 673 (1929).

    Article  ADS  MATH  Google Scholar 

  24. Rasetti, Z. Physik 61, 598 (1930).

    Article  ADS  Google Scholar 

  25. Chadwick, Proc. Roy. Soc. A 136, 692 (1932).

    Article  ADS  Google Scholar 

  26. Heisenberg, Z. Physik 77, 1 (1932).

    Article  MathSciNet  ADS  Google Scholar 

  27. Proceedings of Solvay Congress, Brussels, 1933, page 324.

    Google Scholar 

  28. Fermi, Z. Physik 88, 161 (1934).

    Article  ADS  Google Scholar 

  29. Perrin, Compt. rend. 197, 1625 (1933).

    Google Scholar 

  30. Gamow and Teller, Phys. Rev. 49, 895 (1936).

    Article  ADS  MATH  Google Scholar 

  31. Konopinski and Uhlenbeck, Phys. Rev. 60, 308 (1941).

    Article  ADS  Google Scholar 

  32. Crane and Halpern, Phys. Rev. 53, 789 (1938);

    Article  ADS  Google Scholar 

  33. Crane and Halpern, Phys. Rev. 56, 232 (1939).

    Article  ADS  MATH  Google Scholar 

  34. Christy et al., Phys. Rev. 72, 698 (1947).

    Article  ADS  Google Scholar 

  35. R. Davis, Jr., Phys. Rev. 86, 976 (1952).

    Article  ADS  Google Scholar 

  36. Cowan, Reines et al., Science 124, 103 (1956).

    Article  ADS  Google Scholar 

  37. Wu and Albert, Phys. Rev. 75, 315 (1949).

    Article  ADS  Google Scholar 

  38. Langer, Moffat and Price, Phys. Rev. 76, 1725 (1949).

    Article  ADS  Google Scholar 

  39. Owen and Cook, Phys. Rev. 76, 1726 (1949).

    Article  ADS  Google Scholar 

  40. Langer and Price, Phys. Rev. 75, 1109 (1949).

    Article  ADS  Google Scholar 

  41. Also see Wu, Revs. Mod. Phys. 22, 386 (1950), and Beta and Gamma Spectroscopy, North Holland Publishing Company.

    Article  ADS  Google Scholar 

  42. Feldman and Wu, Phys. Rev. 76, 698 (1949);

    Article  ADS  Google Scholar 

  43. Feldman and Wu, Phys. Rev. 78, 318 (1950).

    Google Scholar 

  44. Bell and Cassidy, Phys. Rev. 76, 183 (1949);

    Google Scholar 

  45. Bell and Cassidy, Phys. Rev. 77, 301 (1950).

    Article  ADS  Google Scholar 

  46. Fulbright and Milton, Phys. Rev. 76, 1271 (1949).

    Article  ADS  Google Scholar 

  47. Alburger, Hughes and Eggler, Phys. Rev. 78, 318 (1950).

    Google Scholar 

  48. Feldman and Wu, Phys. Rev. 76, 697 (1949);

    Article  ADS  Google Scholar 

  49. Feldman and Wu, Phys. Rev. 87, 1091 (1952).

    Article  ADS  Google Scholar 

  50. Bell, Weaver and Cassidy, Phys. Rev. 77, 399 (1950).

    Article  ADS  Google Scholar 

  51. Alburger, Phys. Rev. 79, 236 (1950).

    Google Scholar 

  52. Marshak, Phys. Rev. 75, 513 (1949);

    Article  ADS  Google Scholar 

  53. Marshak, Phys. Rev. 70, 980 (1946).

    Article  ADS  Google Scholar 

  54. Sherr and Gerhart, Phys. Rev. 91, 909 (1953).

    Article  ADS  Google Scholar 

  55. Arber and Stähelin, Helv. Phys. Acta 26, 433 (1953).

    Google Scholar 

  56. Kofoed-Hansen and Winther, Phys. Rev. 86, 428 (1952);

    Article  ADS  Google Scholar 

  57. Kofoed-Hansen and Winther, Dan. Mat. Fys. Medd. 27, no. 14 (1953).

    Google Scholar 

  58. Mahmoud and Konopinski, Phys. Rev. 88, 1266 (1952).

    Article  ADS  Google Scholar 

  59. Mahmoud and Konopinski, Davidson and Peaslee, Phys. Rev. 91, 1232 (1953).

    Article  Google Scholar 

  60. Rustad and Ruby, Phys. Rev. 97, 991 (1955).

    Article  ADS  Google Scholar 

  61. Lee and Yang, Phys. Rev. 104, 254 (1956).

    Article  ADS  Google Scholar 

  62. Wij, Ambler, Hayward, Hoppes and Hudson, Phys. Rev. 105, 1413 (1957).

    Article  ADS  Google Scholar 

  63. Garwin, Lederman and Weinrich, Phys. Rev. 105, 1415 (1957).

    Article  ADS  Google Scholar 

  64. Friedman and Telegdi, Phys. Rev. 105, 1681 (1957).

    Article  ADS  Google Scholar 

  65. Lee and Yang, Phys. Rev. 105, 1671 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  66. Landon, Nuclear Physics 3, 127 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  67. Salam, Nuovo Cimento 5, 299 (1957).

    Article  MathSciNet  Google Scholar 

  68. Curran et al., Phil. Mag. 40, 36 and 53 (1949).

    Google Scholar 

  69. Hanna and Pontecorvo. Phys. Rev. 75, 983 (1949).

    Article  ADS  Google Scholar 

  70. Hamilton et al., Phys. Rsv. 83, 215 (1951).

    Google Scholar 

  71. Langer and Moffat, Phys. Rev. 88, 689 (1952).

    Article  ADS  Google Scholar 

  72. The possibility of a two component relativistic theory of a spin ½ particle was first discussed by H. Weyl, Z. Physik 56, 330 (1929). It was rejected on the ground of parity violation.

    Article  ADS  MATH  Google Scholar 

  73. See W. Pauli, Handbuch der Physik, Verlag Julius Springer, Berlin, 1933, vol. 24, pp. 226—7

    Google Scholar 

  74. The concept of a possible conservation law of leptons was first proposed by E. Konopinski and H. M. Mahmoud, Phys. Rev. 92, 1045 (1953).

    Article  ADS  MATH  Google Scholar 

  75. See also T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  76. A summary of the ß-γ (circular) correlation and the polarization of ß± can be found in Proceedings of Rehovoth Conference on Nuclear Structure, 1957, published by North Holland Publishing Company.

    Google Scholar 

  77. Bremsstrahlung and annihilation method, Möller scattering method. See above Proceedings.

    Google Scholar 

  78. Wu and Schwarzschild, Columbia University Report CU-173.

    Google Scholar 

  79. Herrmannsfelt, Maxson, Stähelin and Allen, Phys. Rev. 107, 641 (1957).

    Article  ADS  Google Scholar 

  80. Herrmannsfelt, Btjrman, Stähelin, Allen and Braid, Phys. Rev. Letters 1, 61 (1958).

    Article  ADS  Google Scholar 

  81. Goldhaber, Grodzins and Sunyar, Phys. Rev. 109, 1015 (1958).

    Article  ADS  Google Scholar 

  82. Burgy, Krohn, Novy, Ringo and Telegdi, Phys. Rev. 110, 1214 (1958).

    Article  ADS  Google Scholar 

  83. Culligan, Frank, Holt, Kluyver and Massam, Nature 80, 751 (1957).

    Article  ADS  Google Scholar 

  84. K. Crowe, Washington Meeting, American Physical Society, 1958.

    Google Scholar 

  85. H. Anderson, Proceedings of the CERN Conference on High Energy Physics, 1958.

    Google Scholar 

  86. Coombes et al., Phys. Rev. 108, 1348 (1957).

    Article  ADS  Google Scholar 

  87. Feynmann and Gell-Mann, Phys. Rev. 109, 193 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  88. Sud Arsman and Marshak, Phys. Rev. 109, 1860 (1958).

    ADS  Google Scholar 

  89. Sakurai, Bull. Am. Phys. Soc. Ser. II, 3, 10 (1958).

    Google Scholar 

  90. Nuovo Cimento 8, 649 (1958).

    Google Scholar 

  91. Crawford et al., Phys. Rev. 108 1102 (1957).

    Article  ADS  Google Scholar 

  92. Eisler et al., Phys. Rev. 108, 1353 (1957).

    Article  ADS  Google Scholar 

  93. Burgy et al., Proceedings of the Second Atoms for Peace Conference, September, 1958, reported 180°±8°.

    Google Scholar 

  94. Alikhanov et al. reported Δv ± 4,5° by measuring electron polarization from RaE (private communication).

    Google Scholar 

  95. N. Bohr, Proceedings of Solvay Congress, Brussels, 1933, page 327.

    Google Scholar 

Download references

Authors

Editor information

O. R. Frisch F. A. Paneth F. Laves P. Rosbaud

Rights and permissions

Reprints and permissions

Copyright information

© 1959 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Wu, C.S. (1959). History of Beta Decay. In: Frisch, O.R., Paneth, F.A., Laves, F., Rosbaud, P. (eds) Beiträge zur Physik und Chemie des 20. Jahrhunderts. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-20204-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-20204-2_5

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-19866-6

  • Online ISBN: 978-3-663-20204-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics