Skip to main content

The function of recombinant human apolipoprotein A-IV from E. coli

Funktion von rekombinantem menschlichem Apolipoprotein A-IV aus Escherichia coli

  • Chapter
Arteriosklerotische Gefäßerkrankungen
  • 18 Accesses

Abstract

Human apolipoprotein (apo) A-IV, a 46 kd protein, is capable of serving as a cofactor for the enzyme lecithin: cholesterol acyltransferase (LCAT), to bind to apo A-I/A-II receptor sites on mouse adipose cells and thereby promote cellular cholesterol efflux. These observations together with the appearence of apo A-IV in human interstitial fluid argue for a role of apo A-IV in reverse cholesterol transport. In order to obtain large amounts of this protein and to perform site-directed mutagenesis, we expressed apo A-IV in E. coli. The recombinant protein was soluble and could be isolated avoiding lipid extraction or other denaturating procedures. Characterization of the recombinant protein showed an additional methionine residue at the N-terminus and exhibited otherwise identical physicochemical properties when compared to apo A-IV isolated from human plasma. The cofactor function for LCAT, the binding to mouse adipose cells and the promotion of cellular cholesterol efflux were indistinguishable between recombinant apo A-IV and the human plasma counterpart. The expression of apo A-IV in E. coli provides a powerful tool to study the physiologic function of apo A-IV by sitedirected mutagenesis.

Zusammenfassung

Menschliches Apolipoprotein (Apo) A-IV, 46 kD, ist in vitro in der Lage, das Enzym Lecithin-Cholesterin-Acyltransferase (LCAT) zu aktivieren, an Apo A-I/A-IIRezeptoren von Maus-Adipozyten zu binden und Cholesterinausstrom aus diesen Zellen zu vermitteln. Diese Beobachtungen, zusammen mit dem Vorkommen von Apo A-IV in der interstitiellen Flüssigkeit, sprechen für die Mitwirkung von Apo A-IV beim Cholesterinrücktransport. Um große Mengen dieses Proteins zu erhalten und gezielte Mutanten herzustellen, wurde menschliches Apo A-IV in Escherichia coli exprimiert. Das rekombinante Protein war löslich und konnte ohne Lipidextraktion oder Denaturierung isoliert werden. Die Charakterisierung des exprimierten Proteins zeigte einen zusätzlichen Methioninrest N-terminal, war jedoch ansonsten in seinen physikochemischen Eigenschaften identisch mit Apo A-IV aus menschlichem Plasma. In bezug auf die Funktion zeigte das rekombinante Apo A-IV im Vergleich mit Apo A-IV aus menschlichem Plasma gleiche Kofaktorfunktionen für die LCAT, war ebenso in der Lage, an Adipozyten der Maus zu binden und Cholesterinausstrom aus diesen Zellen zu vermitteln. Die Expression von Apo A-IV in Escherichia coli bietet die Möglichkeit, zum Beispiel durch gezielte Mutationen die physiologische Rolle von Apo A-IV zu untersuchen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. AMRI E, DANI C, DOGLIO A, ETIENNE J, GRIMALDI P, AILHAUD G. Adipose cell differentiation: evidence for a two-step process in the polyamine-dependent Ob1754 clonal line. Biochem J 1986; 238: 115–122.

    PubMed  CAS  Google Scholar 

  2. BARBARAS R, GRIMALDI P, NEGREL R, AILHAUD G. Characterization of high density lipoprotein binding and cholesterol efflux in cultured mouse adipose cells. Biochem Biophys Acta 1986; 888: 143–156.

    Article  PubMed  CAS  Google Scholar 

  3. BISGAIER CL, SACHDEV OP, MEGNA L, GLICKMANN RM. Distribution of apolipoprotein A-IV in human plasma. J Lipid Res 1986; 26: 11–25.

    Google Scholar 

  4. CHEN CH, ALBERS JJ. Characterization of proteoliposomes containing apolipoprotein A-I: a new substrate for the measurement of lecithin:cholesterol acyltransferase activity. J Lip Res 1982; 23: 680–691.

    CAS  Google Scholar 

  5. CHUNG CT, MILLER RH. A rapid and conveniant method for the preparation and storage of competent bacterial strains. Nucl Ac Res 1988; 16: 35–80.

    Article  Google Scholar 

  6. DUVERGER N, MURRY-BRELIER A, LATTA M, REBOUL S, CASTRO G, MAYAUX J-F, FRUCHART J-C, TAYLOR JM, STEINMETZ A, DENEFLE P. Functional characterization of human recombinant apolipoprotein A-IV produced in Echerichia coli. Eur J Biochem 1991 (in press).

    Google Scholar 

  7. ELSHOURBAGY NA, WALKER DW, BOGUSKI MS, GORDON JI, TAYLOR JM. The nucleotide and derived amino acid sequence of human apolipoprotein A-IV mRNA and the close linkage of its gene to the genes of apolipoproteins A-I and C-III. J Biol Chem 1986; 261: 1988–2002.

    Google Scholar 

  8. GORDON JI, SMITH DP, ALPERS DH, STRAUSS AW. Cloning of complementary deoxyribonucleic acid encoding a portion of rat intestinal preapolipoprotein A-IV messenger ribonucleic acid. Biochemistry 1982; 21: 5424–5431.

    Article  PubMed  CAS  Google Scholar 

  9. HIREL P-H, SCHMITTER J-M, DESSEN P, FAYAT G, BLANQUET S. Extend of N-terminal methionine excision from E. coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Ac Sci USA 1989; 86: 8247–8251.

    Article  CAS  Google Scholar 

  10. HUNKAPILLAR M, HOOD L. Methods Enzymol 1983; 91: 486–493.

    Article  Google Scholar 

  11. JUNG G, DENEFLE P, BECQUART J, MAYAUX J-F. High-all fermentation studies of recombinant E. coli strains expressing human interleukin 113. Pasteur/Microbiol 1988; 139: 129–146.

    Article  CAS  Google Scholar 

  12. LAGROST L, GAMBERT P, BOQUILLON M, LALLEMANT C. Evidence for high density lipoproteins as the major apolipoprotein A-IV-containing fraction in human serum. J Lip Res 1989; 30: 1525–1534.

    CAS  Google Scholar 

  13. MANIATIS T, FRITSCH EF, SAMBROOK J. Molecular cloning: a laboratory manual, pp 1545, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; 1982.

    Google Scholar 

  14. REDGRAVE TG, ROBERT DC, WEST CE. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem 1975; 65: 42–49.

    Article  PubMed  CAS  Google Scholar 

  15. RIFICI VA, EDER HA, SWANEY JB. Isolation and lipid-binding properties of rat apolipoprotein A-IV. Biochim Biphys Acta 1985; 834: 205–214.

    Article  CAS  Google Scholar 

  16. ROSENBERG AH, LADE BN, CHUI D-S, LIN S-W, DUNN JJ, STUDIER FW. Vectors for the selective expression of cloned DNA by T7 RNA polymerase. Gene 1990; 265: 125–135.

    Google Scholar 

  17. STEINMETZ A, BARBARAS R, GHAHIM N, CLAVEY V, FRUCHART J-C, AILHAUD G. Human apolipoprotein A-IV binds to apolipoprotein A-I/A-I I receptor sites and promotes cholesterol efflux adipose cells. J Biol Chem 1990; 265: 7859–7863.

    PubMed  CAS  Google Scholar 

  18. STEINMETZ A, CLAVEY V, VU-DAC N, KAFFARNIK H, FRUCHART J-C. Purification of human apolipoprotein A-IV by fast protein liquid chromatography. J Chromatography (Biomed Appl) 1989; 437: 154–160.

    Article  Google Scholar 

  19. STEINMETZ A, KAFFARNIK H, UTERMANN G. Activation of phosphatidylcholine-sterol acyltransferase by human apolipoprotein E isoforms. Eur J Biochem 1985a; 152: 747–751.

    Article  CAS  Google Scholar 

  20. STEINMETZ A. Role of apolipoprotein A-IV in reverse cholesterol transport. In: STEINMETZ A, KAFFARNIK H, SCHNEIDER J, eds. Cholesterol transport systems and their relation to atherosclerosis. Berlin, Heidelberg: Springer Verlag 1989; 106–112.

    Chapter  Google Scholar 

  21. STEINMETZ A, UTERMANN G. Activation of lecithin: cholesterol acyltransferase by human apolipoprotein A-IV. J Biol Chem 1985b; 260: 2258–2264.

    PubMed  CAS  Google Scholar 

  22. STEIN O, STEIN Y, LEFEVRE M, ROHEIM PS. The role of apolipoprotein A-IV in reverse cholesterol transport studied with cultured cells and liposomes derived from an ether analog of phosphatidylcholine. Biochim Biphys Acta 1986; 878: 7–13.

    Article  CAS  Google Scholar 

  23. SWANEY JB, REESE H, EDER HA. Polypeptide composition of rat high density lipoprotein: characterization by SDS-gel electrophoresis. Biochem Biophys Res Com 1974; 59: 513–519.

    Article  PubMed  CAS  Google Scholar 

  24. WEINBERG RB, SPECTOR MS. Structural properties and lipid binding of human apolipoprotein A-IV. J Biol Chem 1985a; 260: 4914–4921.

    PubMed  CAS  Google Scholar 

  25. WEINBERG RB, SPECTOR MS. The self-association of human apolipoprotein A-IV. Evidence for an in vivo circulating dimeric form. J Biol Chem 1985b; 260: 14279–14286.

    PubMed  CAS  Google Scholar 

  26. WEINBERG RB, SPECTOR MS. Human apolipoprotein A-IV: displacement from the surface of triglyceride-rich particles by HDL2 associated C-apoproteins. J Lip Res 1985c; 26: 26–27.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Steinmetz, A., Kaffarnik, H., Fruchart, JC., Denefle, P. (1992). The function of recombinant human apolipoprotein A-IV from E. coli. In: Heinle, H., Schulte, H., Schaefer, H.E. (eds) Arteriosklerotische Gefäßerkrankungen. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-19646-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-19646-4_8

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07841-6

  • Online ISBN: 978-3-663-19646-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics