Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM))

  • 145 Accesses

Summary

An additive decomposition of L 2(Ω) is defined through a suitable bases. The definition of such a basis and the transformation between the bases is performed by a cascade type algorithm using the prolongations of frequency decomposition multigrid methods. If this basis is an unconditional Schauder basis in L 2(Ω) it shares the main properties with wavelets. Particularly, it is, up to a renormalization, also an unconditional basis in a wide scale of Besov- and Triebel-Lizorkin spaces. Such a basis is appropriate for a good approximation of functions with local singularities. For Petrov Galerkin schemes for pseudodifferential equations or singular integral equations this basis gives rise to sparse representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beylkin, G., Coffman, R., Rokhlin, V.: The fast wavelet transform and numerical algorithms. Comm. Pure and Appl. Math., 141–183 (1991).

    Google Scholar 

  2. Bornemann, F.A., Yserentant, H.: A basic norm equivalence for the theory of multilevel methods , Preprint 92–1, ZIB, 1992 .

    Google Scholar 

  3. Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners, Math. Comp. 55, 1–22 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  4. A.Brandt, A., Lubrecht, A.A.:Multilevel matrix multiplication and fast solution of integral equations, J. Comp. Phys., 90, 348–370 (1991).

    Google Scholar 

  5. Ciarlet, P.L.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York, Oxford 1978.

    Google Scholar 

  6. Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets, Comm. Pure and Applied Math, 45, 485–560 (1992).

    MathSciNet  MATH  Google Scholar 

  7. Dahmen, W., Prössdorf, S.,Schneider, R.: Wavelet approximation methods for pseudodifferential equations I: Stability and convergence, IAAS-Preprint No. 7, Berlin 1992, to appear in Math. Zeitschrift.

    Google Scholar 

  8. Dahmen, W., Prössdorf, S.,Schneider, R.: Wavelet approximation methods for pseudodifferential Preprint No. 82, RWTH Aachen, 1993, to appear in Advances in Computational Mathematics

    Google Scholar 

  9. Dahmen, W., Prössdorf, S.,Schneider, R.: Multiscale methods for pseudodifferential equations, TH FB Mathematik Preprint No. 1566 , to appear in Schuhmaker & Webb (eds.) Topics in the Theory and Applications of Wavelets

    Google Scholar 

  10. Dahmen, W., Kunoth, A.: Multilevel preconditioning, Numerische Mathematik, 63 315–344 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  11. David G., Journée, J.-L.: A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math., 120, 371–397 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  12. Daubechies, I.: Orthonormal bases of compactly supported wavelets, Comm. Pure and Appl. Math. 41, 909–996 (1988).

    MathSciNet  MATH  Google Scholar 

  13. Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics 61, 1992.

    Google Scholar 

  14. Donoho, D.L.: Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Technical Report, Department of Statistics, Stanford University 1992.

    Google Scholar 

  15. Enquist, B., Osher, S., Zhong, S.: Fast wavelet based algorithms for linear evolution equations, ICASE Report No. 92–14, 1992.

    Google Scholar 

  16. Glowinski, R., Lawton, W.M., Ravachol, M., Tenenbaum, E.: Wavelet solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension, Preprint, 1989, Aware Inc., Cambridge, Mass.

    Google Scholar 

  17. Hackbusch W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering, Numer. Math. 54, 463–491 (1989).

    MathSciNet  MATH  Google Scholar 

  18. Hackbusch, W.: The frequency decomposition multigrid method. I. Aplication to anisotropic equations. Numer. Math. 56, 229–245 (1989).

    MathSciNet  MATH  Google Scholar 

  19. Hackbusch, W.: The frequency decomposition multigrid method. II. Convergence analysis based on the additive Schwarz method Numer. Math. 63, 433–453 (1992).

    MathSciNet  MATH  Google Scholar 

  20. Harten, A., Yad-Shalom, I.: Fast multiresolution algorithms for matrix-vector multiplication, ICASE Report No. 92–55, October 1992.

    Google Scholar 

  21. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. 3 Grundlehren series. Springer Verlag, Berlin, Heidelberg, New York, Tokio 1985.

    Google Scholar 

  22. Jaffard, S.: Wavelet methods for fast resolution of elliptic problems, SIAM J. Numer. Anal., 29 (1992), 965–986.

    Article  MathSciNet  MATH  Google Scholar 

  23. Jia, R.Q., Micchelli, C.A.:Using the refinement equation for the construction of pre-wavelets, in: Curves and Surfaces (P. Laurent, A. Le Méhanté, L.L. Schumaker, eds.), Academic Press, New York, 209–246, 1991.

    Google Scholar 

  24. Liandrat, J., Perrier, V., Tchamichian, P.: Numerical resolution of the regularized Burgers equation using the wavelet transform. in “Wavelets” Meyer et al. Springer Verlag 1992.

    Google Scholar 

  25. Maday, Y., Perrier, V., Ravel, J.: Adaptativité dynamique sur bases d’ondelettes pour l’approximation d’equations aux dèrivées partielles. Preprint 1991.

    Google Scholar 

  26. Mallat, S.: Multiresolution approximation and wavelet orthonormal bases of L2(IR),Trans. Amer. Math. Soc., 315 (1989), 69–87.

    MathSciNet  MATH  Google Scholar 

  27. Meyer, Y.: Ondelettes et Opérateurs 1: Ondelettes. Hermann, Paris, 1990.

    Google Scholar 

  28. Meyer, Y.: Ondelettes et Opérateurs 2: Opérateur de Caldéron-Zygmund, Hermann, Paris 1990.

    Google Scholar 

  29. Oswald, P.: Stable splitting of Sobolev spaces and fast solution of variational problems, Forsch.-Erg., FSU Jena, Math/92/5, 1992.

    Google Scholar 

  30. Rieder, A.: Semi-algebraic multi-level methods based on wavelet decompositions. manuscript 1992.

    Google Scholar 

  31. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comp. Phys. 60 (1985).

    Google Scholar 

  32. Yserentant, H.: On the multilevel splitting of finite element spaces. Numer. Math. 49, 379 — 412 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Hackbusch Gabriel Wittum

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Schneider, R. (1994). Wavelets and Frequency Decomposition Multilevel Methods. In: Hackbusch, W., Wittum, G. (eds) Adaptive Methods — Algorithms, Theory and Applications. Notes on Numerical Fluid Mechanics (NNFM). Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-14246-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-14246-1_18

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07646-7

  • Online ISBN: 978-3-663-14246-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics