Skip to main content

Mesh Adaptation via a Predictor-Corrector Strategy in the Streamline Diffusion Method for Nonstationary Hyperbolic Systems

  • Chapter
Adaptive Methods — Algorithms, Theory and Applications

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM))

  • 146 Accesses

Summary

Streamline diffusion is a well-known damping strategy in the numerical approximation of transport-dominated transport-diffusion problems by the finite element method. It combines the effect of higher order upwinding with the flexibility of the variational approach. However, the reliable and accurate resolution of shock-like solution structures requires a refinement of the computational mesh in space and also in time. In this note we propose a strategy for such a mesh refinement within an implicit time stepping process which is based on a local predictor-corrector concept. This approach allows for significant savings with respect to storage and computing time. Some test results are reported for the 1-d Riemann shock tube problem. The mechanism underlying this mesh control strategy can be explained through a rigorous theoretical analysis.

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 123 and SFB 359 Universität Heidelberg

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, H.; Rannacher, R.: Local error expansions and Richardson extrapolation for the streamline diffusion finite element method, 1993, to appear.

    Google Scholar 

  2. Eriksson, E.; Johnson, C.: Adaptive finite element methods for parabolic problems IV: Nonlinear problems, to appear.

    Google Scholar 

  3. Eriksson, E.; Johnson, C.; Thomée, V.: Time discretization of parabolic problems by the discontinuous Galerkin method, Math. Modelling and Numer. Anal., 19, 611643 (1985).

    Google Scholar 

  4. Hughes, T.J.R; Mallet, M; Mizukami, A: A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg. 54, 341–355 (1986).

    MathSciNet  Google Scholar 

  5. Hughes, T.J.R; Mallet, M: A new finite element formulation for computational fluid dynamics: III. The general streamline operator for multidimensional aclvectivediffusive systems, Comput. Methods Appl. Mech. Engrg. 58, 305–328 (1986).

    Google Scholar 

  6. Hughes, T.J.R; Mallet, M: A new finite element formulation for computational fluid dynamics: IV. A discontinuity—capturing operator for multidimensional advectivediffusive systems, Comput. Methods Appl. Mech. Engrg. 58, 329–336 (1986).

    Google Scholar 

  7. Johnson, C.: Finite element methods for convection-diffusion problems, in: Computing Methods in Engineering and Applied Sciences V, (R. Glowinski and J.L. Lions, eds. ), North-Holland 1981.

    Google Scholar 

  8. Johnson, C.; Nävert, U.: An analysis of some finite element methods for advection-diffusion, in: Analytical and Numerical Approaches to Asymptotic Problems in Analysis, (O. Axelsson; L.S. Frank, and A. van der Sluis, eds. ), North-Holland 1981.

    Google Scholar 

  9. Johnson, C.; Nävert, U.; Pitkäranta, J.: Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 45, 285–312 (1984).

    Google Scholar 

  10. Johnson, C.; Schatz, A.H.; Wahlbin, L.B.: Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49, 179, 25–38 (1987).

    Google Scholar 

  11. Johnson, C.; Szepessy, A.: On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. Comp., 49, 180, 427–444 (1987).

    Google Scholar 

  12. Johnson, C.; Szepessy, A.: Adaptive finite element methods for conservation laws based on a posteriori error estimates, to appear.

    Google Scholar 

  13. Johnson, C.; Szepessy, A.; Hansbo, P.: On the convergence of shockcapturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. Comp., 54, 189, 107–129 (1990).

    Google Scholar 

  14. Nävert, U.: A finite element method for convection-diffusion problems, Thesis, Chalmers University of Technology, 1982 .

    Google Scholar 

  15. Rannacher, R.; Zhou, G.H.: Pointwise error estimate for nonstationary hyperbolic problems in the streamline diffusion method, 1992, to appear.

    Google Scholar 

  16. Rannacher, R.; Zhou, G.H.: Mesh orientation and refinement in the streamline diffusion method, 1993, to appear.

    Google Scholar 

  17. Smoller, J.: Shock Waves and Reaction—Diffusion Equations, Springer, Heidelberg, 1983.

    Book  MATH  Google Scholar 

  18. Walter, A.: Ein Finite—Elemente—Verfahren zur numerischen Lösung von Erhaltungsgleichungen, Thesis, Universität Saarbrücken, 1988.

    Google Scholar 

  19. Walter, A.: Implementierung eines Finite-Elemente-Verfahrens für die Euler—Gleichungen der Gasdynamik, Preprint No. 500, SFB 123, Universität Heidelberg, 1989.

    Google Scholar 

  20. Zhou, G.H.: An adaptive streamline diffusion finite element method for hyperbolic systems in gas dynamics, Thesis, Universität Heidelberg, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Hackbusch Gabriel Wittum

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Rannacher, R., Zhou, G. (1994). Mesh Adaptation via a Predictor-Corrector Strategy in the Streamline Diffusion Method for Nonstationary Hyperbolic Systems. In: Hackbusch, W., Wittum, G. (eds) Adaptive Methods — Algorithms, Theory and Applications. Notes on Numerical Fluid Mechanics (NNFM). Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-14246-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-14246-1_16

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07646-7

  • Online ISBN: 978-3-663-14246-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics