Advertisement

A Fast Solver for the Stokes Equations Using Multigrid with a UZAWA Smoother

  • J. F. Maitre
  • F. Musy
  • P. Nigon
Part of the Notes on Numerical Fluid Mechanics book series (NNFM, volume 11)

Summary

We propose a smoother of Uzawa type suitable for the solution of mixed problems by multigrid methods. We report numerical experiments for the Stokes equations discretized through the M.A.C. scheme, comparing the computational work with that of the distributive relaxation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brandt, A., Dinar, N.: “Multigrid solutions to elliptic flow problems”, Numerical Methods for PDES, S.V. Parter ed., pp. 53–147, Academic Press, New York (1979).Google Scholar
  2. [2]
    Brezzi, F.: “On the existence, uniqueness and approximation of Saddle-point problems arising from Lagrangian multipliers”, RAIRO, Anal. Numer. 8(R-2), pp. 129–151 (1974).MathSciNetzbMATHGoogle Scholar
  3. [3]
    Dinar, N.: “Fast methods for the numerical solution of boundary value problems”, Ph. D. Thesis, Dept. of Applied Mathematics, Weizmann Institute of Science, Rehovot (1978).Google Scholar
  4. [4]
    Fortin, M., Glowinski, R.: “Méthodes de lagrangien augmenté (Application à la résolution numérique de problèmes aux limites)”, Collection MMI, Dunod, Paris (1981).Google Scholar
  5. [5]
    Hackbusch, W.: “Analysis and multigrid solutions of mixed finite element and mixed difference equations”, Preprint, Institut für angewandte Mathematik, Ruhr-Universität Bochum (1980).Google Scholar
  6. [6]
    Musy, F.: Thèse, Université de Lyon, to appear.Google Scholar
  7. [7]
    Nigon, P.: “Une nouvelle classe de méthodes multigrilles pour les problèmes mixtes — Application à la résolution rapide du problème de Stokes”, Thèse de 3e Cycle, Ecole Centrale de Lyon (1984).Google Scholar
  8. [8]
    Peisker, P.: “A multilevel algorithm for the biharmonic problem”, Bericht Nr. 17, Abteilung für Mathematik, Ruhr-Universität Bochum (1984). Numer. Math. (to appear)Google Scholar
  9. [9]
    Raviart, P.A.: “Les méthodes d’éléments finis en mécanique des fluides”, Ecole d’Eté d’Analyse Numérique CEA-EDF-INRIA, Eyrolles, Paris (1981).Google Scholar
  10. [10]
    Temam, R.: “Navier-Stokes equations, theory and numerical analysis”, North-Holland, revised ed. (1979).Google Scholar
  11. [11]
    Verfürth, R.: “A multilevel algorithm for mixed problems”, SIAM J. Numer. Anal. 4, 441–455 (1984)zbMATHGoogle Scholar
  12. [12]
    Welch, J.E., Harlon, F.H., Shannon, J.P., Daly, B.J.: “The MAC method”, LASL, Report N° LA 3425, Los Alamos Scientific Laboratory (1965).Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1985

Authors and Affiliations

  • J. F. Maitre
    • 1
  • F. Musy
    • 1
  • P. Nigon
    • 1
  1. 1.Département de Mathématiques-Informatique-SystèmesEcole Centrale de LyonEcully CedexFrance

Personalised recommendations