Advertisement

A Multigrid Treatment of Stream Function Normal Derivative Boundary Conditions

  • H. Holstein
  • G. Papamanolis
Part of the Notes on Numerical Fluid Mechanics book series (NNFM, volume 11)

Summary

Numerical treatments of two-dimensional viscous flow commonly discretise the stream function normal derivative boundary conditions in terms of a boundary vorticity. We investigate four methods of relaxing such a boundary condition, within the context of a multigrid treatment employing pointwise relaxation of the steady creeping flow within a driven capacity. For each method, we calculate the average error reduction factor per multigrid iteration, and in some cases are able to obtain ideal values characteristic of the interior problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Thom, A: “An investigation of fluid flow in two dimensions”, Aer. Res. Ctee., R. and M., No. 1194, United Kingdom, 1929.Google Scholar
  2. [2]
    Roache, P.J.: “Computational Fluid Dynamics”, Hermosa Publishers, 1972.Google Scholar
  3. [3]
    Brandt, A: “Guide to multigrid development”, in Multigrid Methods, Lecture Notes in Mathematics 960, ed. Hackbusch, W. and Trottenberg, U., Springer Verlag, 1982.Google Scholar
  4. [4]
    Wilkinson, J.H.: “The Algebraic Eigenvalue Problem”, Clarendon Press, 1965.Google Scholar
  5. [5]
    Papamanolis, G.: “Multigrid Methods in Fluid Dynamics”, M.Sc. Thesis, University of Wales, 1984.Google Scholar
  6. [6]
    Brandt, A.: “Multilevel adaptive solutions to boundary-value problems”, Mathematics of Computation, Vol.31, Number 138, April 1977.Google Scholar
  7. [7]
    Stüben, K., Trottenberg, U.: “Multigrid methods”, in Multigrid Methods, Lecture Notes in Mathematics 960, ed. Hackbusch, W. and Trottenberg, U., Springer-Verlag, 1982.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1985

Authors and Affiliations

  • H. Holstein
    • 1
  • G. Papamanolis
    • 1
  1. 1.Department of Computer ScienceU.C.W. AberystwythDyfedUK

Personalised recommendations