Advertisement

Two Multi-Level Algorithms for the Dam Problem

  • C. Bollrath
Part of the Notes on Numerical Fluid Mechanics book series (NNFM, volume 11)

Summary

We describe two multi-level algorithms for the numerical solution of stationary porous flow free boundary problems. The first one calculates two convergent sequences of super — solutions and subsolutions. It combines projected relaxation steps as proposed by Alt in [2] with corrections of the pressure in the saturated region. This conservative correction preserves the monotonicity. In the second (heuristic) algorithm, we apply the FAS technique[5] to the dam problem and use an approximation of the full problem on the coarse grid. Several numerical examples are presented. For large problems, the multi-level algorithms are significantly faster than previous algorithms in which only one grid is used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alt, H.W.: “Strömungen durch inhomogene poröse Medien mit freiem Rand”, J. Feine Angew.Math. 305 (1979) pp. 89–115.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Alt, H.W.: “Numerical solution of steady-state porous flow free boundary problems”, Numer. Math. 36 (1980) pp.73–98.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Baiocchi, C.: “Su un problema di frontiera libera connesso a questione di idraulica”, Ann. Mat. Pura Appl. (4) 92 (1972) pp. 107–127.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Bollrath, C.: “Zwei Mehrgitterverfahren zur numerischen Berechnung von stationären Strömungen durch poröse Medien mit freiem Rand”, Dissertation, Ruhr-Universität Bochum (submitted).Google Scholar
  5. [5]
    Brandt, A.: “Multi-level adaptive solutions to boundary value problems”, Math.Comp. 31 (1977) pp. 333–390.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Brandt, A., Cryer, C.W.: “Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems”, SIAM J. Sci. Stat. Comput. 4 (1983) pp. 655–684.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Brezis, H., Kinderlehrer, D., Stampacchia, G.: “Sur une nouvelle formulation du problème de l’écoulement à travers une digue”, C. R. Acad. Sci. Paris 287 (1978) pp. 711–714.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Mandel, J.: “A fast iterative method for large, sparse, symmetric, positive definite linear complementary systems”, Appl. Math. Optim. 11 (1984) pp. 77–95.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Marini, L.D., Pietra, P.: “Fixed-point algorithm for stationary flow in porous media”, Instituto di Analisi Numerica del C.N.R., Pavia. Preprint (1983).Google Scholar
  10. [10]
    Pietra, P.: “An up-wind method for a filtration problem”, RAIRO, Anal. Numér. (4) 16 (1982) pp. 483–481.MathSciNetGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1985

Authors and Affiliations

  • C. Bollrath
    • 1
  1. 1.Mathematisches InstitutRuhr-UniversitätBochum 1Federal Republic of Germany

Personalised recommendations