Two Multi-Level Algorithms for the Dam Problem

  • C. Bollrath
Part of the Notes on Numerical Fluid Mechanics book series (NNFM, volume 11)


We describe two multi-level algorithms for the numerical solution of stationary porous flow free boundary problems. The first one calculates two convergent sequences of super — solutions and subsolutions. It combines projected relaxation steps as proposed by Alt in [2] with corrections of the pressure in the saturated region. This conservative correction preserves the monotonicity. In the second (heuristic) algorithm, we apply the FAS technique[5] to the dam problem and use an approximation of the full problem on the coarse grid. Several numerical examples are presented. For large problems, the multi-level algorithms are significantly faster than previous algorithms in which only one grid is used.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alt, H.W.: “Strömungen durch inhomogene poröse Medien mit freiem Rand”, J. Feine Angew.Math. 305 (1979) pp. 89–115.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Alt, H.W.: “Numerical solution of steady-state porous flow free boundary problems”, Numer. Math. 36 (1980) pp.73–98.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Baiocchi, C.: “Su un problema di frontiera libera connesso a questione di idraulica”, Ann. Mat. Pura Appl. (4) 92 (1972) pp. 107–127.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Bollrath, C.: “Zwei Mehrgitterverfahren zur numerischen Berechnung von stationären Strömungen durch poröse Medien mit freiem Rand”, Dissertation, Ruhr-Universität Bochum (submitted).Google Scholar
  5. [5]
    Brandt, A.: “Multi-level adaptive solutions to boundary value problems”, Math.Comp. 31 (1977) pp. 333–390.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Brandt, A., Cryer, C.W.: “Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems”, SIAM J. Sci. Stat. Comput. 4 (1983) pp. 655–684.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Brezis, H., Kinderlehrer, D., Stampacchia, G.: “Sur une nouvelle formulation du problème de l’écoulement à travers une digue”, C. R. Acad. Sci. Paris 287 (1978) pp. 711–714.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Mandel, J.: “A fast iterative method for large, sparse, symmetric, positive definite linear complementary systems”, Appl. Math. Optim. 11 (1984) pp. 77–95.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Marini, L.D., Pietra, P.: “Fixed-point algorithm for stationary flow in porous media”, Instituto di Analisi Numerica del C.N.R., Pavia. Preprint (1983).Google Scholar
  10. [10]
    Pietra, P.: “An up-wind method for a filtration problem”, RAIRO, Anal. Numér. (4) 16 (1982) pp. 483–481.MathSciNetGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1985

Authors and Affiliations

  • C. Bollrath
    • 1
  1. 1.Mathematisches InstitutRuhr-UniversitätBochum 1Federal Republic of Germany

Personalised recommendations