Advertisement

A Preconditioned Conjugate Residual Algorithm for the Stokes Problem

  • R. Verfürth
Part of the Notes on Numerical Fluid Mechanics book series (NNFM, volume 11)

Abstract

We present a preconditioned conjugate residual algorithm for a mixed finite element discretization of the Stokes problem
$$ - \Delta \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}\to {u} + \nabla \rho = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}\to {f} {\text{ }}in{\text{ }}\Omega {\text{ }},\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}\to {u} = 0{\text{ on }}\partial \Omega {\text{ }}div{\text{ }}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}\to {u} = 0{\text{ }}in{\text{ }}\Omega $$
(1.1)
in a plane polygonal domain Ω. The preconditioning relies on the idea of hierarchical basis functions for finite elements (cf.[7, 8]). The algorithm has a quasi optimal convergence rate of 1-0(|logh|).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ph. G. Ciarlet: “The finite element method for elliptic problems”. North Holland, Amsterdam, 1978.Google Scholar
  2. [2]
    V. Girault, P.A. Raviart: “The finite element approximation of the Navier-Stokes equations”. Springer, Berlin. 1979.CrossRefGoogle Scholar
  3. [3]
    R. Verfürth: “Error estimates for a mixed finite element approximation of the Stokes equations”. RAIRO 18, 175–182 (1984).zbMATHGoogle Scholar
  4. [4]
    R. Verfürth: “A combined conjugate gradient-multigrid algorithm for the numerical solution of the Stokes problem”. IMA J. Numer. Anal. 4, 441–455 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    R. Verfürth: “A Multi-Level algorithm for mixed problems”. SIAM J. Numer. Anal. 21, 264–271 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    R. Verfürth: “Iterative methods for the numerical solution of mixed finite element approximations of the Stokes problem”. Report INRIA, 1985.Google Scholar
  7. [7]
    H. Yserentant: “On the multi-Level splitting of finite element spaces”. Bericht Nr. 21 RWTH Aachen, 1983.Google Scholar
  8. [8]
    H. Yserentant: “Über die Aufspaltung von finite Element Räumen in Teilräume verschiedener Verfeinerungsstufen”. Habilitationsschrift, RWTH Aachen, 1984.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1985

Authors and Affiliations

  • R. Verfürth
    • 1
    • 2
  1. 1.INRIA Domaine de Voluceau — RocquencourtLE CHESNAY CedexFrance
  2. 2.Mathematisches InstitutRUBBochumW. - Germany

Personalised recommendations