Skip to main content

Gamma Capacity

  • Chapter
  • 50 Accesses

Part of the book series: Aspects of Mathematics / Aspekte der Mathematik ((ASMA,volume E 14))

Abstract

Definition (the Choquet Integral). Assume that f is a non-negative function and c a capacity. Then \(\int {f{d_C}} \) is defined by

$$\int {f{d_c} = \int\limits_0^\infty {c\left( {\left\{ {x;f\left( x \right) > s} \right\}} \right)ds} } $$

.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references

  • Theorem IX:2 is due to F. Topsøe, On construction of measures. Københavns Universitet, Mat. Inst. Preprint series 1974:27.

    Google Scholar 

  • Corollary IX:1 is due to G. Choquet, Theory of capacities. Ann. Inst. Fourier 5 (1953-54).

    Google Scholar 

  • The notation of swarm is closely related to that of “noyau capacitaire regulier” as defined in C. Dellacherie, Ensembles analytiques. Capacités. Mesures de Hausdorff. Springer LNM. 295 (1972).

    Google Scholar 

  • Example 1 is due to V. Šeinow (see Ronkins book below). Example 2 is due to C.O. Kiselman. Manuscript. Uppsala 1973.

    Google Scholar 

  • The gamma capacity was introduced in L.I. Ronkin, Introduction to the theory of entire functions of several variables. Amer. Math. Soc. Providence. R.I. 1974, and the modified gamma capacity is in S.Ju. Favorov, On capacity characterizations of sets in ₵n. Charkov 1974 (Russian). The remark by Remmert, used in the proof of Theorem IX:9 is in R. Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume. Math. Ann. 133 (1957).

    Google Scholar 

  • The set functions γn and Γn has been used in connection with removable singularity sets; cf. U. Cegrell, Removable singularity sets for analytic functions having modulus with bounded Laplace mass. Proc. Amer. Math. Soc. Vol. 88 (1983).

    Google Scholar 

  • P. Järvi, Removable singularities for Hp-functions. Proc. Amer. Math. Soc. Vol. 86 (1982).

    Google Scholar 

  • J. Riihentaus, An extension theorem for meromorphic functions of several variables. Ann. Acad. Sc. Fenn. Sér. AI. Vol. 4 (1978/79).

    Google Scholar 

  • Some of the material of this section has been published in seminaire Pierre Lelong-Henri Skoda (Analyse) 1978/79. Springer LNM 822. 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Cegrell, U. (1988). Gamma Capacity. In: Capacities in Complex Analysis. Aspects of Mathematics / Aspekte der Mathematik, vol E 14. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-14203-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-14203-4_10

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-06335-1

  • Online ISBN: 978-3-663-14203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics