Advertisement

The de Rham Complex of a Reduced Analytic Space

  • Vincenzo Ancona
  • Bernard Gaveau
Chapter
  • 49 Downloads
Part of the Aspects of Mathematics book series (ASMA, volume E 26)

Abstract

We construct a de Rham complex on a reduced analytic space of fine sheaves of differential forms which are identical to the usual sheaves of C forms outside the singularities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    V. Ancona and B. Gaveau. Differential forms and resolutions on certain analytic spaces I Irreducible exceptional divisor. Bull. Sci. Math., 116: 307–324, 1992.MathSciNetzbMATHGoogle Scholar
  2. [2]
    V. Ancona and B. Gaveau. Differential forms and resolutions on certain analytic spaces II Flat resolutions. Canadian J. Math., 44: 728–749, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    V. Ancona and B. Gaveau. Formes differentielles et résolutions sur certains espaces analytiques. C. R. Acad. Sci. Paris, 314: 133–138, 1992.MathSciNetzbMATHGoogle Scholar
  4. [4]
    V. Ancona and B. Gaveau. Modules plats de differentielles sur certains espaces analytiques. C. R. Acad. Sci. Paris, 314: 223–225, 1992.MathSciNetzbMATHGoogle Scholar
  5. [5]
    V. Ancona and B. Gaveau. Differential forms and resolutions on certain analytic spaces III Spectral resolutions. Annali di Mathematica,to appear.Google Scholar
  6. [6]
    T. Bloom and M. Herrera. De Rham cohomology of an analytic space. Invent. Math., 7: 275–296, 1969.MathSciNetCrossRefGoogle Scholar
  7. [7]
    I. Fary. Valeurs critiques et algèbres spectrales d’une application. Ann. of Math., 63 (2): 437–490, 1956.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    I. Fary. Cohomologie des variétés algébriques. Ann. of Math., 65 (2): 21–73, 1957.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    A. Ferrari. Cohomology and holomorphic differential forms on complex analytic spaces. Ann. Scuola Norm. Sup. Pisa, 24 (3): 65–77, 1970.MathSciNetzbMATHGoogle Scholar
  10. [10]
    H. Grauert. Ein Theorem der analytische Garbentheorie und die Modulräume komplexer Strukturen. Inst. Hautes Etudes Sci. Publ. Math., (5): 64 pp., 1960.Google Scholar
  11. [11]
    R. Hartshorne. On the de Rham cohomology of algebraic varieties. Publ. Math. LH.E.S., (45): 5–99, 1975.Google Scholar
  12. [12]
    J. Leray. L’anneau spectral et l’anneau filtré d’homologie d’un espace localement compact et d’une application continue. J. Math. Pures Appl., 29 (9): 1–139, 1950.MathSciNetzbMATHGoogle Scholar
  13. [13]
    H. J. Reiffen. Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen. Math. Z., 101: 269–284, 1967.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    H. J. Reiffen and U. Vetter. Pfaffsche Formen auf komplexen Räumen. Math. Ann., 167: 338–350, 1966.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1994

Authors and Affiliations

  • Vincenzo Ancona
  • Bernard Gaveau

There are no affiliations available

Personalised recommendations