Skip to main content

Numerical Solution of Mixed Finite Element Problems

  • Chapter
Efficient Solutions of Elliptic Systems

Part of the book series: Notes on Numerical Fluid Mechanics ((NNFM,volume 10))

Summary

We describe two algorithms for the numerical solution of mixed finite element problems which arise e.a. from the discretization of the Stokes equations. For the first algorithm we transform the original problem into an equation Lp = g involving a continuous, positive definite, symmetric linear operator L. We apply a conjugate gradient algorithm to this equation. The evaluation of Lp is done approximately using a multigrid algorithm. In the second algorithm we apply the multiarid idea directly to the indefinite problem. We use Jacobi iteration for the squared system as smoothing operator. The convergence improves when using a conjugate residual algorithm. The convergence rate is measured in a mesh dependent norm. Both algorithms have convergence rates bounded away from 1 independently of the mesh-size. We present numerical results for the first algorithm. Numerical experiments for the second algorithm are in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Bank: A comparison of two multilevel iterative methods for non-symmetric and indefinite elliptic finite element equations. SIAM J. Numer. Anal. 18, 724–743 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. R.E. Bank, T. Dupont: An optimal order process for solving finite element equations. Math. Comp. 36, 35–51 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. R.E. Bank, A.H. Sherman: An adaptive multilevel method for elliptic boundary value problems. Computing 26, 91–105 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bercovier, 0. Pironneau: Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33, 211–224 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Bernardi, G. Raugel: Méthodes d’éléments finis mixtes pour les équations de Stokes et de Navier-Stokes dans un polygone non convexe. Calcolo 18, 255–291 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Braess: The convergence rate of a multigrid method with Gauss-Seidel relaxation for the Poisson equation. In: Multigrid methods (W.Hackbusch, U.Trottenberg; eds.), pp. 368–386, Springer 1982

    Google Scholar 

  7. D. Braess, W. Hackbusch: A new convergence proof for the multigrid method including the “-cycle. SIAM J. Numer. Anal. 20, 967–975 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Brandt: Multi-level adaptive solution to boundary value problems. Math. Comp. 31, 333–391 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Girault, P.A. Raviart: Finite element approximation of the Navier-Stokes equations. Springer 1979

    Google Scholar 

  10. W. Hackbusch: Ein iteratives Verfahren zur schnellen Auflösung elliptischer Randwertprobleme. Report 76–12, Universität Köln 1976

    Google Scholar 

  11. W. Hackbusch: Multi-grid convergence theory. In: Multigrid methods (W. Hackbusch, U. Trottenberg; eds.), pp. 177–219, Springer 1982

    Google Scholar 

  12. O. Ladyzenskaya: The mathematical theory of viscous incompressible flows. Gordon & Breach 1963

    Google Scholar 

  13. D.G. Luenberger: Introduction to linear and nonlinear programming. Addison-Wesley 1973

    Google Scholar 

  14. J. Stoer: Solution of large linear systems of equations by conjugate gradient type methods. Preprint

    Google Scholar 

  15. R. Verfürth: Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO (to appear)

    Google Scholar 

  16. R. Verfürth: A combined conjugate gradient - multigrid algorithm for the numerical solution of the Stokes problem. IMA J. Numer. Math. (to appear)

    Google Scholar 

  17. R. Verfürth: A multilevel algorithm for mixed problems. SIAM J. Numer. Math. (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Verfürth, R. (1984). Numerical Solution of Mixed Finite Element Problems. In: Hackbusch, W. (eds) Efficient Solutions of Elliptic Systems. Notes on Numerical Fluid Mechanics, vol 10. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-14169-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-14169-3_10

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08084-6

  • Online ISBN: 978-3-663-14169-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics