Skip to main content

A parallel subspace decomposition method for elliptic and hyperbolic systems

  • Chapter
Fast Solvers for Flow Problems

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM))

  • 64 Accesses

Summary

Robust and efficient algorithms for solving linear hyperbolic and elliptic systems of first order are presented. A vertex-centered discretisation of the conservation equations on a triangular grid is applied. The discrete system is obtained by minimizing the flux residuals on the triangles. The resulting normal equations are solved by a subspace decomposition approach. A new sequence of four prolongations defines the subspaces.

Additive and multiplicative Schwarz iterations modified by smoothing steps solve the equations. Robust relaxation schemes with uniformly bounded error reduction rates for anisotropic elliptic and hyperbolic problems are obtained. The combination of a conjugate gradient method with modified additive Schwarz iteration as preconditioner improves the convergence.

The additive variants are perfectly suited for parallel processing. A parallel efficiency up to 0.8 is obtained with nine processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jameson, A.: Solution of the Euler equations for two dimensional transonic flow by a multigrid method. Applied Math. Computation 13 (1983) 327–356.

    Article  MathSciNet  MATH  Google Scholar 

  2. Hemker, P. W.; Spekreijse, S. P.: Multiple grid and Osher’s scheme for the efficient solution of the Euler equations. Applied Numer. Math. 2 (1986) 475–493.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Shaw, G.; Wesseling, P.: A multigrid method for the Navier-Stokes equations. Delft University of Technology, Dept. Mathematics and Informatics. Report No.: 86-13, 1986.

    Google Scholar 

  4. Dick, E.: Multigrid formulation of polynomial flux-difference splitting for steady Euler equations. J. Computational Physics 91 (1990) 161–173.

    Article  ADS  MATH  Google Scholar 

  5. Mulder, W. A.: A high resolution Euler solver based on multigrid, semi-coarsening, and defect correction. J. Computational Physics 100 (1992) 91–104.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Ta’asan, Sholmo: Optimal multigrid solvers for steady state inviscid flow problems. Fourth European Multigrid Conference, EMG’ 93, Amsterdam, 1993.

    Google Scholar 

  7. Koren, P. W.; Hemker, P. W.: Damped, direction-dependent multigrid for hypersonic flow computation. Applied Numerical Mathematics 7 (1991) 309–328.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hackbusch, W.: A new approach to robust multi-grid solvers. First. Int. Conf. on Industrial and Applied Mathematics. ICI AM’ 87. Proceedings, Philadelphia, PA: SIAM 1988, pp. 114–126.

    Google Scholar 

  9. Hackbusch, W.: The frequency decomposition multi-grid method. Part I: Application to anisotropic equations. Numerische Mathematik 56 (1990) 229–245.

    Article  MathSciNet  Google Scholar 

  10. Hughes, Th. J. R.: Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations. Int. J. for Numer. Methods in Fluid Dynamics 7 (1987) 1261–1275.

    Article  ADS  MATH  Google Scholar 

  11. Hughes, Th. J. R.; Franca, L. P.; Hulbert, G. M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Least-Squares method for advective-diffusive equations. Computer Methods in Applied Mechanics and Engineering 73 (1989) 173–189.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Hackbusch, W.: Multi-grid methods and applications. Berlin: Springer, 1985.

    Book  MATH  Google Scholar 

  13. Katzer, E.: A subspace decomposition twogrid method for hyperbolic equations. Fourth European Conference on Multigrid Methods, EMG’ 93. In: Hemker, P. W.; Wesseling, P. (esd.): Contributions to Multigrid, pp. 87-98. CWI Tract 103. Amsterdam: Centrum voor Wiskunde en Informatica, 1994.

    Google Scholar 

  14. Bertsekas, D. P.; Tsitsiklis, J. N.: Parallel and distributed computation. Englewood Cliffs, NJ: Prentice Hall, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Katzer, E. (1995). A parallel subspace decomposition method for elliptic and hyperbolic systems. In: Hackbusch, W., Wittum, G. (eds) Fast Solvers for Flow Problems. Notes on Numerical Fluid Mechanics (NNFM). Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-14125-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-14125-9_14

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07649-8

  • Online ISBN: 978-3-663-14125-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics