Skip to main content

The affine Toda equations and minimal surfaces

  • Chapter
Harmonic Maps and Integrable Systems

Part of the book series: Aspects of Mathematics ((ASMA,volume E 23))

Abstract

In this article we consider geometrical interpretations of the two-dimensional affine Toda equations for a compact simple Lie group G. These equations originated from the work of Toda [33],[34] over 25 years ago on vibrations of lattices, and they have received considerable attention from both pure and applied mathematicians particularly over the last 15 years. (For the original context of the ideas the reader is referred to [35], [27] and [1] and for a survey of recent work to [29] and [21]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M. Adler and P. van Moerbeke, Completely integrable systems, Euclidean Lie algebras, and curves, Adv. Math. 38 (1980), 267–317.

    Article  MATH  Google Scholar 

  2. M. Black, Harmonic maps into homogeneous spaces, Longman, Harlow, 1991.

    MATH  Google Scholar 

  3. A.I. Bobenko, All constant mean curvature tori in R3, S3, H3 in terms of theta-functions, Math. Ann. 290 (1991), 209–245.

    Article  MathSciNet  MATH  Google Scholar 

  4. A.I. Bobenko, Surfaces in terms of 2 by 2 matrices. Old and new integrable cases,this volume.

    Google Scholar 

  5. J. Bolton, G.R. Jensen, M. Rigoli and L.M. Woodward, On conformal minimal immersions of S 2 into CP“, Math. Ann. 279 (1988), 599–620.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bolton, F. Pedit and L.M. Woodward, Minimal surfaces and the Toda field model,preprint, Universities of Durham and Massachussetts, Amherst.

    Google Scholar 

  7. J. Bolton, L.Vrancken and L.M. Woodward, On almost complex curves in the nearly Kiihler 6-sphere,Quarterly J. Math. (Oxford), to appear.

    Google Scholar 

  8. J. Bolton and L.M. Woodward, On immersions of surfaces into space forms, Soochow J. Math. 14 (1988), 11–31.

    MathSciNet  MATH  Google Scholar 

  9. J. Bolton and L.M. Woodward, Congruence theorems for harmonic maps from a Riemann surface into CP“ and S”, J. London Math. Soc. 45 (2) (1992), 363–376.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Bolton and L.M. Woodward, Minimal surfaces in CP“ with constant curvature and Kähler angle, Math. Proc. Camb. Phil. Soc. 112 (1992), 287–296.

    Article  MathSciNet  MATH  Google Scholar 

  11. R.L. Bryant, Submanifolds and special structures on the octonians, J. Diff. Geom. 17 (1982), 185–232.

    MATH  Google Scholar 

  12. F.E. Burstall. Harmonic tori in spheres and complex projective spaces,in preparation.

    Google Scholar 

  13. F.E. Burstall, D. Ferus, F. Pedit and U. Pinkall, Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras, Ann. of Math. 138 (1993), 173–212.

    Article  MathSciNet  MATH  Google Scholar 

  14. F.E. Burstall and F. Pedit, Harmonic maps via Adler-Kostant-Symes theory,this volume.

    Google Scholar 

  15. F.E. Burstall and J.C. Wood, The construction of harmonic maps into complex Grassmannians„ J. Diff. Geom. 23 (1986), 255–297.

    MathSciNet  MATH  Google Scholar 

  16. E. Calabi, Minimal immersions of surfaces into Euclidean spheres, J. Diff. Geom. 1 (1967), 111–125.

    MathSciNet  MATH  Google Scholar 

  17. A.M. Din and W.J. Zakrzewski, General classical solutions in the CPn -1 model, Nuclear Phys. B 174 (1980), 397–406.

    Article  MathSciNet  Google Scholar 

  18. A. Doliwa and A. Sym, The non-linear a-model in spheres, preprint, Warsaw University, 1992.

    Google Scholar 

  19. J. Eells and J.C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math. 49 (1983), 217–263.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Ferus, F. Pedit, U. Pinkall and I. Sterling, Minimal tori in S4, J. Reine Angew. Math. 429 (1992), 1–47.

    MathSciNet  MATH  Google Scholar 

  21. A.P. Fordy, Integrable equations associated with simple Lie algebras and symmetric spaces, in: Soliton Theory: A Survey of Results, ed. A.P. Fordy, Manchester Univ. Press 1990, 315–337.

    Google Scholar 

  22. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, San Francisco, London 1978.

    MATH  Google Scholar 

  23. N.J. Hitchin, Harmonic maps from a 2-torus to the 3-sphere, J. Diff. Geom. 31 (1990), 627–710.

    MathSciNet  MATH  Google Scholar 

  24. A. Jimenez, Addendum to “Existence of Hermitian n-symmetric spaces and non-commutative naturally reductive spaces”, Math. Z. 197 (1988), 455–456.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Kenmotsu, On minimal immersions of R 2 into P“(C), J. Math. Soc. Japan 37 (1985), 665–682.

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Kostant, The principal three dimensional subgroups and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. Math. 34 (1979), 195–338.

    Article  MathSciNet  MATH  Google Scholar 

  28. H.B. Lawson, Complete minimal surfaces in S 3, Ann. of Math. 92 (1970), 335–374.

    Article  MathSciNet  MATH  Google Scholar 

  29. A.N. Leznov and M.V. Saveliev. Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems, Birkhäuser, Basel 1992.

    Book  MATH  Google Scholar 

  30. I. McIntosh, Infinte dimensional Lie groups and the two-dimensional Toda lattice,this volume.

    Google Scholar 

  31. M. Melko and I. Sterling, Integrable systems, harmonic maps and the classical theory of surfaces,this volume.

    Google Scholar 

  32. U. Pinkall and I. Sterling, On the classification of constant mean curvature tori, Ann. of Math. 130 (1989), 407–451.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Toda, Vibrations of a chain with nonlinear interaction, J. Phys. Soc. Japan 22 (1967), 431–436.

    Article  Google Scholar 

  34. M. Toda, Wave propagation in anharmonic lattices, J. Phys. Soc. Japan 23 (1967), 501–506.

    Article  Google Scholar 

  35. M. Toda, Theory of Nonlinear Lattices, Springer, Berlin, Heidelberg, New York 1981.

    Book  MATH  Google Scholar 

  36. J.G. Wolfson, On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature, Trans. Amer. Math. Soc. 290 (1985), 627–646.

    MathSciNet  MATH  Google Scholar 

  37. J.C. Wood, Harmonic maps into symmetric spaces and integrable systems,this volume.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Bolton, J., Woodward, L.M. (1994). The affine Toda equations and minimal surfaces. In: Fordy, A.P., Wood, J.C. (eds) Harmonic Maps and Integrable Systems. Aspects of Mathematics, vol E 23. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-14092-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-14092-4_4

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-06554-6

  • Online ISBN: 978-3-663-14092-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics