Skip to main content

Harmonic maps into symmetric spaces and integrable systems

  • Chapter
Harmonic Maps and Integrable Systems

Part of the book series: Aspects of Mathematics ((ASMA,volume E 23))

Abstract

Let M = (M m, g), N = (N n, h) be C ∞ Riemannian manifolds of dimensions m,n respectively and let ΓΈ: M m β†’ N n be a C ∞ mapping between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. Bahy-El-Dien and J.C. Wood, The explicit construction of all harmonic 2-spheres in G2(ℝn), J. Reine u. Angew. Math. 398 (1989), 36–66.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  2. A. Bahy-El-Dien and J.C. Wood, The explicit construction of all harmonic two-spheres in quaternionic projective space, Proc. London Math. Soc. 62 (1991), 202–224.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  3. P. Baird, Harmonic maps with symmetry, harmonic morphisms and deformations of metrics, Research Notes in Math. 87, Pitman, London (1983).

    Google ScholarΒ 

  4. P. Baird and J. Eells, A conservation law for harmonic maps,in: Geometry Symposium, Utrecht 1980, ed. E. Looijenga, D. Siersma and F. Takens, Lecture Notes in Math. 894, Springer, (1981), 1–25.

    Google ScholarΒ 

  5. P. Baird and A. Ratto, Conservation laws, equivariant harmonic maps and harmonic morphisms, Proc. London Math. Soc. (3) 64 (1992), 197–224.

    MathSciNetΒ  Google ScholarΒ 

  6. P. Baird and J.C. Wood, Bernstein theorems for harmonic morphisms from II83 and S3, Math. Ann. 280 (1988), 579–603.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  7. P. Baird and J.C. Wood, Harmonic morphisms and conformal foliations by geodesics of three-dimensional space forms, J. Austral. Math. Soc. (A) 51 (1991), 118–153.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  8. P. Baird and J.C. Wood, Harmonic morphisms, Seifert fibre spaces and conformal foliations, Proc. London Math. Soc. (3) 64 (1992), 170–196.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  9. P. Baird and J.C. Wood, The geometry of a pair of Riemannian foliations by geodesics and asociated harmonic morphisms, Bull. Soc. Math. Belg. Ser. B 44 (1992), 115–139.

    Google ScholarΒ 

  10. A.I. Bobenko, All constant mean curvature tori in R 3, S 3, H 3 in terms of theta-functions, Math. Ann. 290 (1991), 209–245.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  11. J. Bolton, F. Pedit and L.M. Woodward, Minimal surfaces and the Toda field model,preprint, Universities of Durham and Massachussetts, Amherst.

    Google ScholarΒ 

  12. J. Bolton and L.M. Woodward, The affine Toda equations and minimal surfaces,this volume.

    Google ScholarΒ 

  13. M. Bordemann, M. Forger, J. Laartz, U. SchΓ€per, 2-dimensional nonlinear sigma models: zero curvature and Poisson structure,this volume.

    Google ScholarΒ 

  14. R. Bryant, Conformal and minimal immersions of compact surfaces into the 4-sphere, J. Diff. Geom 17 (1982), 455–473.

    MATHΒ  Google ScholarΒ 

  15. F.E. Burstall, Twistor methods for harmonic maps, in: Differential Geometry (Proceedings, Lyngby 1985), ed. V.L. Hansen, Lecture Notes in Math. 1263, Springer, Berlin (1987), 55–96.

    ChapterΒ  Google ScholarΒ 

  16. F.E. Burstall, Harmonic maps and soliton theory, Mathematica Contemporanea 2 (1992), 1–18.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  17. F.E. Burstall, Harmonic tori in spheres and complex projective spaces,in preparation.

    Google ScholarΒ 

  18. F.E. Burstall, D. Ferus, F. Pedit and U. Pinkall, Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras, Ann. of Math. 138 (1993), 173–212.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  19. F.E. Burstall and F. Pedit, Harmonic maps via Adler-Kostant-Symes theory,this volume.

    Google ScholarΒ 

  20. F.E. Burstall and J.H. Rawnsley, Twistor theory for Riemannian symmetric spaces with applications to harmonic maps of Riemann surfaces, Lecture Notes in Math. 1424, Springer, Berlin 1990.

    BookΒ  Google ScholarΒ 

  21. F.E. Burstall and S.M Salamon, Tournaments, flags and harmonic maps, Math. Ann. 277 (1987), 249–266.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  22. F. Burstall and J.C. Wood, The construction of harmonic maps into complex Grassmannians, J. Diff. Geom. 23 (1986), 255–298.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  23. E. Calabi, Quelques applications de l’analyse complexe aux surfaces d’aire minima in: Topics in Complex Manifolds, UniversitΓ© de MontrΓ©al (1967), 59–81.

    Google ScholarΒ 

  24. J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, North Holland, Amsterdam 1975.

    MATHΒ  Google ScholarΒ 

  25. Y-M. Chen and W-Y. Ding, Blow-up and global existence for heat flows of harmonic maps, Invent. Math. 99 (1990), 567–578.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  26. S.S. Chern, Minimal surfaces in Euclidean space of N dimensions, in: Symposium in honor of Marston Morse, Princeton University Press 1965, 187–198.

    Google ScholarΒ 

  27. S.S. Chern and J. Wolfson, Harmonic maps of the two-sphere into a complex Grassmannian manifold II, Ann. of Math. 125 (1987), 301–335.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  28. J.-M. Coron and J.-M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques, C.R. Acad. Sci. Paris SΓ©rie 1, Math. 308 (1989), 339–344.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  29. A. Doliwa and A. Sym, The non-linear o - -model in spheres, preprint, Warsaw University, 1992.

    Google ScholarΒ 

  30. B.A. Dubrovin, Theta functions and non-linear equations, Uspekhi Mat. Nauk 36: 2 (1981), 11–80

    MathSciNetΒ  Google ScholarΒ 

  31. B.A. Dubrovin, Theta functions and non-linear equations, Russian Math, Surveys 36: 2 (1981), 11–92.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  32. J. Fells, On the surfaces of Delaunay and their Gauss maps, Proc. 4th Inter. Colloq. Diff. Geom., Santiago de Compostela (1978), Univ. de Santiago de Compostela 1979, 97–116; reprinted as The surfaces of Delauney, Math. Intell. 9 (1978), 53–57.

    Google ScholarΒ 

  33. J. Fells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1–68.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  34. J. Eells and L. Lemaire, Selected topics in harmonic maps, C.B.M.S. Regional Conference Series 50, Amer. Math. Soc. 1983.

    Google ScholarΒ 

  35. J. Fells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385–524.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  36. J. Fells and A. Ratto, Harmonic maps and minimal immersions with symmetries, Methods of ordinary diferential equations applied to elliptic variational problems, Annals of Math. Studies, 130, Princeton Univ. Press 1993.

    Google ScholarΒ 

  37. J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  38. J. Eells and J.C. Wood, Restrictions on harmonic maps of surfaces, Topology 15 (1976), 263–266.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  39. J. Eells and J.C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math. 49 (1983), 217–263.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  40. G.F.R. Ellis and S.W. Hawking, The large scale structure of space time, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press (1973).

    MATHΒ  Google ScholarΒ 

  41. S. Erdem and J.C. Wood, On the construction of harmonic maps into a Grassmannian,J. London Math. Soc. (2) 28 (1983), 161–174.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  42. J. Eschenburg and R. Tribuzy, Branch points of conformal mappings of surfaces, Math. Ann. 278 (1988), 621–633.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  43. D. Ferus, F. Pedit, U. Pinkall and I. Sterling, Minimal tori in S 4, J. Reine Angew. Math. 429 (1992), 1–47.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  44. A.P. Fordy (ed.) Soliton theory: a survey of results, Manchester Univ. Press 1990.

    Google ScholarΒ 

  45. P.A. Griffiths, Linearizing flows and a cohomological interpretation of Lax equations,Amer. J. Math. 107 (1985), 1445–1483.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  46. J.F. Growtowski, Harmonic map heat flow for axially symmetric data, Man. Math. 73 (1991), 207–228.

    ArticleΒ  Google ScholarΒ 

  47. C.-H. Gu, On the harmonic maps from Rβ€œ to S 1 ”, J. Reine u. Angew. Math. 346 (1984), 101–109.

    MATHΒ  Google ScholarΒ 

  48. M. Guest, Harmonic 2-spheres in complex projective space and some open problems, Expos. Math. 10 (1992), 61–87.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  49. R. Gulliver, R. Osserman and H.L. Royden, A theory of branched immersions of surfaces, Amer. J. Math. 95 (1973), 750–812.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  50. F. HΓ©lein, RΓ©gularitΓ© des applications faiblement harmoniques entre une surface et une variΓ©tΓ© riemannienne, C.R. Acad. Sci. Paris 312 (1991), 591–596.

    MATHΒ  Google ScholarΒ 

  51. D. Hilbert, Die Grundlagen der Physik, Nachr. Ges. Wiss. GΓΆttingen (1915), 395–407, (1917), 53–76.

    Google ScholarΒ 

  52. N.J. Hitchin, Harmonic maps from a 2-torus to the 3-sphere, J. Diff. Geom. 31 (1990), 627–710.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  53. D.A. Hoffman and R. Osserman, The Gauss map of surfaces in R 3 and R4, Proc. London Math. Soc. 50 (1985), 27–57.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  54. W-Y. Hsiang and H.B. Lawson, Minimal submanifolds of low cohomogeneity, J. Diff. Geom. 5 (1971), 1–38.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  55. H. Karcher and J.C. Wood, Non-existence results and growth properties for harmonic maps and forms, J. Reine u. Angew. Math. 353 (1984), 165–180.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  56. K. Kenmotsu, Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann. 245 (1979), 89–99.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  57. P.Z. Kobak, Twistors, nilpotent orbits and harmonic maps, this volume.

    Google ScholarΒ 

  58. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry,vol II, Inter-science, Wiley, New York 1969.

    MATHΒ  Google ScholarΒ 

  59. A.O. Kowalski, Generalized symmetric spaces, Lecture Notes in Math. 805, Springer-Verlag, Berlin (1980).

    Google ScholarΒ 

  60. B. Loo, The space of harmonic maps of S 2 into S 4, Trans. Amer. Math. Soc. 313 (1989), 81–102.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  61. A. Lichnerowicz, Applications harmoniques et variΓ©tΓ©s KΓ€hlΓ©riennes, Symp. Math. III (Bologna 1970 ), 341–402.

    Google ScholarΒ 

  62. M. Mafias, The principal chiral model as an integrable system,this volume.

    Google ScholarΒ 

  63. H. McKean and E. Trubowitz, Hill’s equation and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), 143–226.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  64. I. McIntosh, Infinite dimensional Lie groups and the two-dimensional Toda lattice,this volume.

    Google ScholarΒ 

  65. M. Melko and I. Sterling, Integrable systems and the classical theory of surfaces,this volume.

    Google ScholarΒ 

  66. J. Moser, Various aspects of integrable Hamiltonian systems, Progress in Math. 8, BirkhΓ€user, Boston 1980.

    Google ScholarΒ 

  67. Y. Ohnita and G. Valli, Pluriharmonic maps into compact Lie groups and factorization into unitons, Proc. London Math. Soc. (3) 61 (1990), 546–570.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  68. K. Pohlmeyer, Integrable Hamiltonian systems and interactions through quadratic constraints, Comm. Math. Phys. 46 (1976), 207–221.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  69. J.H. Rawnsley, f-structures, f-twistor spaces and harmonic maps, Sem. Geom. L. Bianchi II, 1984, Lecture Notes in Math. 1164, Springer, Berlin 1985, 85–159.

    Google ScholarΒ 

  70. J.H. Rawnsley, Noether’s theorem for harmonic maps, in: Diff. Geom. Methods in Math. Phys., ed. S. Sternberg, Reidel, Dodrecht 1984, 197–202.

    ChapterΒ  Google ScholarΒ 

  71. A.G. Reyman and M.A. Semenov-Tian-Shansky, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations, II, Invent. Math. 63 (1981), 423–432.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  72. C. Rogers and W.F. Shadwick, BΓ€cklund transforms and their applications, Academic Press, New York 1982.

    Google ScholarΒ 

  73. E.A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569–573.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  74. R.T. Smith, Harmonic maps of spheres, Thesis, University of Warwick, 1972.

    Google ScholarΒ 

  75. I. Sterling and H.C. Wente, Existence and classification of constant mean curvature multibubbletons of finite and infinite type, preprint, Univ. Toledo (1992).

    Google ScholarΒ 

  76. A.V. Tyrin, Harmonic spheres in compact Lie groups and extremals of a multivalued Novikov functional, Uspekhi Mat. Nauk. 46: 3 (1991), 197–198

    MathSciNetΒ  Google ScholarΒ 

  77. A.V. Tyrin, Harmonic spheres in compact Lie groups and extremals of a multivalued Novikov functional, Russ. Math. Surveys 46: 3 (1991), 235–236.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  78. K. Uhlenbeck, Minimal 2-spheres and tori in S e ’, preprint (1975).

    Google ScholarΒ 

  79. K. Uhlenbeck, Equivariant harmonic maps into spheres, Harmonic maps, Proceedings, New Orleans 1980, ed. R.J. Knill, M. Kalka and H.C.J. Sealey, Lecture Notes in Math. 949, Springer, Berlin 1982, 146–158.

    Google ScholarΒ 

  80. K. Uhlenbeck, Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom. 30 (1989), 1–50.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  81. M. Umehara and K. Yamada, Harmonic non-holomorphic mappings of 2-tori into the 2-sphere, in: Geometry of Manifolds (Matsumoto 1988), ed. K. Shiohama, Perspectives in Math. 8, Academic Press, Boston, London 1989.

    Google ScholarΒ 

  82. G. Valli, On the energy spectrum of harmonic 2-spheres in unitary groups, Topology 27 (1988), 129–136.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  83. J. Wolfson, Harmonic maps of the two-sphere into the complex hyperquadric, J. Diff. Geom. 24 (1986), 141–152.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  84. J. Wolfson, Harmonic sequences and harmonic maps of surfaces into complex Grassmannian manifolds, J. Diff. Geom. 27 (1988), 161–178.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  85. J.C. Wood, Twistor constructions for harmonic maps, in: Differential Geometry and Differential Equations (Proceedings, Shanghai, 1985), ed. Gu Chaohao, M. Berger and R.L. Bryant, Lecture Notes in Math. 1255, Springer, Berlin (1987), 130–159.

    ChapterΒ  Google ScholarΒ 

  86. J.C. Wood, Holomorphic differentials and classification theorems for harmonic maps and minimal immersions, in: Global Riemannian Geometry, ed. T.J. Willmore and N.J. Hitchin, Ellis Horwood, Chichester 1984, 168–175.

    Google ScholarΒ 

  87. J.C. Wood, The explicit construction and parametrization of all harmonic maps from the two-sphere to a complex Grassmannian, J. Reine u. Angew. Math. 386 (1988), 1–31.

    MATHΒ  Google ScholarΒ 

  88. J.C. Wood, Explicit construction and parametrization of harmonic 2-spheres in the unitary group, Proc. London Math. Soc. (3) 58 (1989), 608–624.

    ArticleΒ  Google ScholarΒ 

  89. J.C. Wood, Harmonic morphisms and Hermitian structures on Einstein 4-manifolds, Internat. J. Math. 3 (1992), 415–439.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  90. J.C. Wood, Harmonic maps and harmonic morphisms,Lobachevshy Semester, Euler International Math. Inst. (to appear).

    Google ScholarΒ 

  91. V.E. Zakharov and A.V. Mikhailov, Relativistically invariant two-dimensional model of field theory which is integrable by means of the inverse scattering problem method, Zh. Eksp. Teor.Fiz. 74 (1978), 1953–1973

    MathSciNetΒ  Google ScholarΒ 

  92. V.E. Zakharov and A.V. Mikhailov, Relativistically invariant two-dimensional model of field theory which is integrable by means of the inverse scattering problem method, Sov. Phys. JETP 47 (1978) 1017–1027.

    Google ScholarΒ 

  93. V.E. Zakharov and A.V. Shabat Integration of nonlinear equations of Mathematicalβ€”Physics by inverse scattering II, Funkts. Anal. Prilozh. 13 (1978), 13–22

    MathSciNetΒ  Google ScholarΒ 

  94. V.E. Zakharov and A.V. Shabat Integration of nonlinear equations of Mathematicalβ€”Physics by inverse scattering II, Func. Anal. Appl. 13 (1979), 166–174.

    MathSciNetΒ  Google ScholarΒ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Β© 1994 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Wood, J.C. (1994). Harmonic maps into symmetric spaces and integrable systems. In: Fordy, A.P., Wood, J.C. (eds) Harmonic Maps and Integrable Systems. Aspects of Mathematics, vol E 23. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-14092-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-14092-4_3

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-06554-6

  • Online ISBN: 978-3-663-14092-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics