Transonic Flow Calculations with Finite Elements

  • H. Deconinck
  • Ch. Hirsch
Part of the Notes on Numerical Fluid Mechanics book series (NONUFM, volume 3)


The full potential equation is formulated for transonic flow with an artificial compressibility and discretized with Finite Elements. Bilinear elements are used and the system of equationsis solved iteratively with a relaxation method and with an implicit factorized ADI technique. The methods are briefly described and results are discussed for the channel flow problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Hafez, M and Murman,E.M. Recent Developments in Finite Element Analysis for Transonic Flows. Proc. of Advanced Technology Airfoil Research - ATAR - NASA Langley, March(1978).Google Scholar
  2. 2.
    Glowinski,R, Périaux, J, Pironneau,0. Transonic Flow Simulation by the Finite Element Method Via Optimal Control. Second Int. Symp. on Finite Elements in Fluid Flow, Rapallo,(1976).Google Scholar
  3. 3.
    Périaux, J. Résolution de quelques Problèmes non-linéaires en Aérodynamique par des méthodes d’elements Finis et de Moindres Carrés Fonctionnels. Ph. D. Thesis-Univ. Pierre and Marie Curie - Paris V I, (1979).Google Scholar
  4. 4.
    Deconinck,H, Hirsch, Ch. A Finite Element Method Solving the Full Potential Equation with Boundary layer Interaction in Transonic Cascade Flow. AIAA Paper 79–0132, (1979).Google Scholar
  5. 5.
    Eberle, A. Eine Methode Finiter Elemente zur Berechnung der Transsonischen Potential-Stromung um Profile. MBB Bericht UEE 1352 (o), (1977).Google Scholar
  6. 6.
    Hafez, M, Murman,E.M. Artificial Compressibility Methods for Numerical Solution of Transonic Full Potential Equation. AIAA Paper 78–1148 (1978).Google Scholar
  7. 7.
    Holst,T.L., Ballhaus,W.F. Conservative Implicit Schemes for the Full Potential Equation Applied to Transonic Flows. NASA TM 78469, (1978).Google Scholar
  8. 8.
    Jameson, A. Transonic Potential Flow Calculation using conservation Form. AIAA 2nd Computational Fluid Dynamics Conf. Proceedings, (June 1975), 148–155.Google Scholar
  9. 9.
    Holst,T.L. An Implicit Algorithm for the conservative,Transonic Full Potential Equation Using an Arbitrary Mesh. AIAA Paper 78–1113 (1978).Google Scholar
  10. 10.
    Douglas,J and Dupont,T. Alternating Direction Galerkin Methods on Rectangles. Proc. Symp. on Numerical Solution of Partial Differential Equations II–SYNSPADE II, B. Hubbard,Ed. Academic Press, New York, (1971) p. 133–214.Google Scholar
  11. 11.
    Dendy,J. and Fairweather,G. Alternating Direction Galerkin Methods for Parabolic and Hyperbolic Problems on Rectangular Polygones. SIAM J. Numer. Anal. Vol 12, (1975), 144.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Marchuk, G.I. Methods of Numerical Mathematics. Springer Verlag,(1975).Google Scholar
  13. 13.
    Viviand, H. Conservative Forms of Gas Dynamic Equations. La Recherche Aérospatiale, 1, (1974), p. 65.Google Scholar
  14. 14.
    Vinokur,M. Conservation Equations of Gas Dynamics in Curvilinear Coordinate Systems. J.Comp. Phys., Vol. 14, (1974), p. 105–125.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Zienkiewicz,O.C. The Finite Element Method, Mc Graw Hill, New York, (1977).zbMATHGoogle Scholar
  16. 16.
    W.F. Ballhaus, A. Jameson, J. Albert. Implicit Approximate Factorization Schemes for Steady Transonic Flow Problems. AIAA Journal Vol. 16, N° 6, (June 1978).Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1981

Authors and Affiliations

  • H. Deconinck
    • 1
  • Ch. Hirsch
    • 1
  1. 1.Dept. Fluid MechanicsVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations