Computation of Viscous Free-Surface Flow Around a Single Bubble

  • D. Claes
  • W. Leiner
Conference paper
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


A numerical method for two-dimensional unsteady free-surface flows including effects of surface-tension was developed to investigate the convection generated by vapour bubbles in nucleate boiling systems. This paper presents the incorporation of the free-surface conditions into the implicit segregated solution approach for the incompressible Navier-Stokes-equations. The finite-volume discretization is based on the physical contravariant velocity components in a staggered boundary-fitted grid. The results for non-steadily departing and rising bubbles compare well with experimental data from the high-speed cinematography.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ahlberg, H.H., Nilson, E.N., Walsh, J.L. The Theory of Splines and their Applications. New York: Academic Pr., 1967.Google Scholar
  2. [2]
    Burow, P. Die Berechnung des Blasenwachstums beim Sieden von Flüssigkeiten an Heizflächen als numerische Lösung der Erhaltungsgleichungen. Dissertation, TH Darmstadt, 1979.Google Scholar
  3. [3]
    Claes, D. Numerische Simulation von instationären Strömungen mit freien Oberflächen am Beispiel ablösender und aufsteigender Blasen. Dissertation, Ruhr-Univ. Bochum, in preparation.Google Scholar
  4. [4]
    Demirdžić, I.A. A Finite Volume Method for Computation of Fuid Flow in Complex Geometries. Ph.D. Thesis, Imperial College, London, 1982.Google Scholar
  5. [5]
    Demirdžić, I., Gosman, A.D., Issa, R.I., Perić, M. “A calculation procedure for turbulent flow in complex geometries” Computers & Fluids.15, 3 (1987): 251–273.ADSzbMATHCrossRefGoogle Scholar
  6. [6]
    Demirdzic, I., Peric, M. “Space conservation law in finite volume calculations of fluid flow” Int. J. Num. Meth. Fluids.8 (1988): 1037–1050.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Harlow, F.H., Welch, J.E. “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface” Physics of Fluids.8, 12 (1965): 2182–2189.ADSzbMATHCrossRefGoogle Scholar
  8. [8]
    Hilgenstock, A. “A fast method for the elliptic generation of three-dimensional grids with full boundary control” Proc. 2. Int. Conf. on Numerical Grid Generation in Computational Fluid Dynamics. Swansea: Pineridge Pr., 1988.Google Scholar
  9. [9]
    Hirt, C.W., Nichols, B.D., Romero, N.C. SOLA — A numerical solution algorithm for transient fluid flows. Los Alamos Scientific Lab., Rep. LA-5852, 1975.Google Scholar
  10. [10]
    Kistler, S.F., Scriven, L.E. “Coating flow theory by finite element and asymptotic analysis of the Navier-Stokes system” Int. J. Num. Meth. Fluids.4 (1984): 207–229.zbMATHCrossRefGoogle Scholar
  11. [11]
    Madhavan, S. An Experimental and Mathematical Study of the Shapes of Bubbles Growing on Surfaces in an Isothermal Superheated Fluid. Ph.D. Thesis, Univ. of Kansas, 1970.Google Scholar
  12. [12]
    Raithby, G.D., Schneider, G.E., “Elliptic Systems: Finite-Difference Method II” Handbook of Numerical Heat Transfer. Eds. W.J. Minkowycz et. al., New York: Wiley, 1988, 949–999.Google Scholar
  13. [13]
    Perng, Ch.-Y., Street, R.L. “Three-dimensional unsteady flow simulations: Alternative strategies for a volume-averaged calculation” Int. J. Num. Meth. Fluids.9 (1989): 341–362.CrossRefGoogle Scholar
  14. [14]
    Rieger, H. Numerische Berechnung von Wärmetransportvorgängen bei laminaren freien Kon-vektionsströmungen in beliebigen festen sowie zeitabhängigen ebenen Geometrien. Dissertation, TH Darmstadt, 1984.Google Scholar
  15. [15]
    Ryskin, G., Leal, L.G. “Numerical solution of free-boundary problems in fluid mechanics — Part 1. The finite-difference technique — Part 2. Buoyancy driven motion of a gas bubble through a quiescent liquid.” J. Fluid Mech. 148 (1984): 1–35.ADSzbMATHCrossRefGoogle Scholar
  16. [16]
    Saito, H., Scriven, L.E. “Study of coating flow by the finite element method” J. Comput. Physics. 42 (1981): 53–76.ADSzbMATHCrossRefGoogle Scholar
  17. [17]
    Vinokur, M. An Analysis of Finite-Difference and Finite-Volume Formulations of Conservation Laws. NASA Contractor Report 177416, 1986.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • D. Claes
    • 1
  • W. Leiner
    • 1
  1. 1.Institut für Thermo- und FluiddynamikRuhr-Universität BochumBochum 1Germany

Personalised recommendations