Solution of the 3-D, Incompressible Navier-Stokes Equations for the Simulation of Vortex Breakdown

  • M. Breuer
  • D. Hänel
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


A method of solution is presented for the threedimensional, unsteady Navier - Stokes equations of an incompressible fluid. The method is based on the principle of artificial compressibility, extended to time-dependent solutions by the concept of dual time stepping. Higher order upwinding (Quick interpolation, and Roe-type splitting) is used for the spatial discretization. The properties of the method were tested by means of different validated flow problems. Present computations concern with the unsteady, and three-dimensional problem of the breakdown of an isolated vortex. The temporal evolution and the internal structure of the breakdown bubble is investigated and compared with experimental observations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Grabowski, W.J., Berger, S.A.: Solutions of the Navier-Stokes equations for vortex breakdown, J. Fluid Mech., vol.75, part 3, pp.525–544, (1976).ADSzbMATHCrossRefGoogle Scholar
  2. [2]
    Menne, S.: Rotationssymmetrische Wirbel in achsparalleler Strömung, Diss. RWTH Aachen, (1986).Google Scholar
  3. [3]
    Hafez, M., Ahmad, J., Kuruvila, G., Salas, M.D.: Vortex breakdown simulation, Part I, AIAA Paper 87-1343., (1987).Google Scholar
  4. [4]
    Menne, S.: Vortex breakdown in an axisymmeiric flow, AIAA 26th Aerospace Sciences Meeting, Reno, Nevada, Jan. 11-14, (1988).Google Scholar
  5. [5]
    Menne, S.: Simulation of vortex breakdown in tubes, AIAA-Paper 88-3575, 1st National Fluid Dynamics Congress, Cincinatti, Ohio, July 25-28, (1988).Google Scholar
  6. [6]
    Spall, R.E., Gatski, T.B.: A Numerical Simulation of Vortex breakdown, Forum on Unst. Flow Sep., ASME Fluids Eng. Conf., June 1987.Google Scholar
  7. [7]
    Leibovich, S., Ma, H.Y.: Phys. Fluids, vol. 26, 3173 (1983).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. [8]
    Chorin, A.J.: J. Comput. Phys. 2, 12–26, (1967).ADSzbMATHCrossRefGoogle Scholar
  9. [9]
    Leonard, B.P.: Proceedings of the 2nd National Sym. on Numerical Properties and Methologies in Heat Transfer, Univ. of Maryland, 211, (1983).Google Scholar
  10. [10]
    Leonard, B.P.: Proceedings of the 1983 Int. Conf. on Computational Techniques and Applications, Univ. of Sydney, Australia, 106, (1984).Google Scholar
  11. [11]
    Roe, P.L.: Approximate Rieman solvers, parameter vectors and difference schemes, J. Comp. Phys., vol 22, pp 357, (1981).CrossRefGoogle Scholar
  12. [12]
    Spall, R.E., Gatski, T.B., Grosch C.E.: A Criterion for vortex breakdown, Phys. Fluids 30, (11), (Nov. 1987).Google Scholar
  13. [13]
    Sarpkaya, T.: On stationary and travelling vortex breakdowns, J. Fluid Mech., vol.45, part 3, pp.545–559, (1971).ADSCrossRefGoogle Scholar
  14. [14]
    Escudier, M.: Vortex breakdown: Observation and Explanations, Progress in Aerospace Sciences, vol.25, No.2, pp.189–229, (1988).ADSCrossRefGoogle Scholar
  15. [15]
    Leibovich, S.: The structure of vortex breakdown, Ann. Rev. of Fluid Mechanics, vol.10, pp.221–246, (1978).ADSCrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • M. Breuer
    • 1
  • D. Hänel
    • 1
  1. 1.Aerodynamisches InstitutRWTH AachenAachenGermany

Personalised recommendations