Advertisement

Computation of the Viscous Flow Past a Prolate Spheroid at Incidence

  • Jean Piquet
  • Patrick Queutey
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)

Summary

The computation of the threedimensional viscous flow past a prolate spheroid at incidence and its wake is investigated. An iterative technique resting on the fully elliptic mode is applied to the Reynolds-Averaged-Navier-Stokes-Equations (RANSE) written down in a non-orthogonal curvilinear body-fitted coordinate system. Results of the computation are compared to available experiments such as the DFVLR experiments and the ONERA experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.P. Kreplin, H.U. Meier & A. Maier “Wind-tunnel model and measuring techniques for the investigation of threedimensional boundary layers” Proc. AIAA 10th Aero. Testing Conf., San Diego (1982).Google Scholar
  2. [2]
    H.P. Kreplin, H. Vollmers & H.U. Meier “Measurements of the wall-stress on an inclined prolate spheroid” Zeitchrift für Flugwissenschaften und Welttaumferschung, Vol.6 heft 4, pp 248–252 (1982).Google Scholar
  3. [3]
    T. Cebeci, R.S. Hirsh & K. Kaups “Calculation of three dimensional boundary layers on bodies of revolution at incidence”; Mc. Donnell Douglas Rept. MDCJ7643 (contract N60921-76-C-0089), (1978).Google Scholar
  4. [4]
    M. Rosenfeld, M. Israeli & M. Wolfshtein “Numerical study of the skin friction on a spheroid at incidence”, AIAA Journal, Vol.26, No2, Feb.(1988).Google Scholar
  5. [5]
    T.C. Wong, O.A. Kandil & C.H. Liu “Navier-Stokes computation of separated vortical flows past prolate spheroid at incidence” AIAA 89-0553 (1989].Google Scholar
  6. [6]
    V.N. Vatsa, J.L. Thomas & B. Wedan “Navier-Stokes computation of prolate spheroids at angle of attack”, AIAA 87-2627-CP, (1987).Google Scholar
  7. [7]
    D. Pan & T.H. Pulliam “The computation of steady three dimensional flows over aerodynamic bodies at incidence and yaw” AIAA P. 86-0109, Jan.(1986).Google Scholar
  8. [8]
    J.F. Thompson “Numerical grid generation” Elsevler Publ. Co. N-Y.Google Scholar
  9. [9]
    J. Piquet & M. Visonneau “Steady threee dimensional viscous flow past a shiplike hull”, Proc. 7th GAMM Conf. on Num. Methods in Fluid Mechanics; Louvain, Belg.; Notes Num. Fluid Mech., Vol.20; Vieweg; M. Deville Eds. (1987).Google Scholar
  10. [10]
    J. Piquet, P. Queutey & M. Visonneau “Computation of the three dimensional wake of a shiplike hull” Proc. 11th Int. Conf. On Num. Methods in Fluid Dynamics; Williamsburg, USA; Dwoyer, D.L.; Hussaini & M.Y. Voigt, R.G. Eds. Springer Verlag Lect. Notes in Physics; Vol.323 (1988).Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • Jean Piquet
    • 1
  • Patrick Queutey
    • 1
  1. 1.CFD Group, LHN, URA 1217 CNRSENSMNantes CedexFrance

Personalised recommendations