Advertisement

On the Relation Between TVD and Mesh Adaption and Application to Navier-Stokes Calculations

  • B. Palmerio
  • C. Olivier
  • A. Dervieux
Conference paper
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)

Abstract

Considering the TVD methods as accuracy-adaption methods, we propose a strategy for deciding mesh refinements for TVD-approximated compressible flows. Both mesh enrichment and deformation are applied to two typical test cases involving boundary layers: a flow past a flat plate and a flow around an airfoil.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ph.M. Gresho, R.L. Lee, Dont’ suppress the wiggles. They are telling you something!, in Finite Element methods for Convection Dominated flows, New York, Dec. 2-7, 1979.Google Scholar
  2. [2]
    L. Fezoui, Résolution des équations d’Euler par un schéma de van Leer en éléments finis, INRIA Report 358, 1985.Google Scholar
  3. [3]
    B. Stoufflet, J. Periaux, L. Fezoui, A. Dervieux, Numérical simulation of 3-D hypersonic Euler flows around space vehicles, 25th AIAA Conf., Reno, 1987, AIAA paper 87-0560.Google Scholar
  4. [4]
    L. Fezoui, S. Lanteri, B. Larrouturou, C. Olivier, Résolution numérique des équations de Navier-Stokes pour un fluide compressible en maillage triangulaire, INRIA Report, 1989.Google Scholar
  5. [5]
    Ph. Rostand, B. Stoufflet, Finite volume Galerkin methods for viscous gas dynamics, INRIA Report 863, 1988.Google Scholar
  6. [6]
    B. Palmerio, A. Dervieux, A 3-D unstructured-mesh adaption relying on physical analogy, Comm. to Numerical Grid Generation in Computational Fluid Mechanics, Miami, Dec. 1988.Google Scholar
  7. [7]
    B. van Leer, W.A. Mulder, Relaxation methods for hyperbolic equations, in Numerical Methods for the Euler Equations of Fluid Dynamics, Angrand et al. Eds., SIAM (1985)Google Scholar
  8. [8]
    Ph. L. Roe, Approximate Riemann solvers, parameters vectors and difference schemes, J. of Comp. Phys., 43, 357–371 (1981)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    V. Billey, A. Dervieux, L. Fezoui, J. Periaux, V. Selmin, B. Stoufflet, Recent improvement in Galerkin and upwind Euler solvers and application to 3-D transonic flow in aircraft design, in Eighth Int. Conf. on Computer Methods in Applied Science and Engineering, Versailles, dec. 1987, North Holland 1988Google Scholar
  10. [10]
    M. O. Bristeau, R. Glowinski, J. Periaux, H. Viviand, (Eds) Numerical simulation of compressible Navier-Stokes flows, Note on Numerical Fluid Mechanics, 18, Vieweg, Braunschweig (1987)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • B. Palmerio
    • 1
  • C. Olivier
    • 2
  • A. Dervieux
    • 2
  1. 1.University of Nice and INRIA-Sophia- AntipolisFrance
  2. 2.INRIA-Sophia-AntipolisValbonneFrance

Personalised recommendations