Advertisement

Calculation of 3-D Laminar Flows with Complex Boundaries Using a Multigrid Method

  • A. Orth
  • B. Schönung
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)

Summary

The paper reports on the use of a multigrid method for calculating 3-D incompressible, laminar flows with complex geometries. The flow solver, which is briefly described, is based on a finite-volume method using non-staggered grid arrangement and general curvilinear coordinates. Following the SIMPLE-algorithm of Patankar and Spalding the discretized momentum equations are solved sequentially. The applied multigrid method is a modified Full-Approximation Scheme (FAS), updating the variable-dependent components in the source terms on coarser grids too. For the different flow configurations the multigrid performance is described and the predicted results are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hackbusch, W., Trottenberg, U.: Multigrid Methods. Lecture Notes in Mathematics, Vol.960, Springer-Verlag, Berlin, 1982Google Scholar
  2. [2]
    Vanka, S.P.: Block-Implicit Multigrid Calculation of 2-Dim. Recirculating Flows, Comp. Meth. Appl. Mech. Eng., Vol.59, 1986, pp.29–48zbMATHCrossRefGoogle Scholar
  3. [3]
    Barcus, M., Peric, M., Scheuerer, G.: A Control Volume Based Full Multigrid Procedure for the Prediction of Two-Dimensional, Laminar, Incompressible Flows, 7th GAMM Conf. Num. Meth. Fluid Mech., Louvain-la-Neuve, Belgium, 1987Google Scholar
  4. [4]
    Arakawa, C., Demuren, A.O., Rodi, W., Schönung, B.: Application of multigrid Methods for the Coupled and Decoupled Solution of the Incompressible Navier-Stokes Equations, 7th GAMM Conf. Num. Meth. Fluid Mech., Louvain-la-Neuve, Belgium, 1987Google Scholar
  5. [5]
    Peric, M.: A Finite-Volume Method for the Prediction of Three-Dim. Fluid Flow in Complex Ducts, PHD-Thesis, Imp. Coll. Sci. and Techn., Univ. London, 1985Google Scholar
  6. [6]
    Majumdar, S., Schönung, B., Rodi, W.: A Finite Volume Method for Steady Two-Dimensional Incompressible Flows Using Non-staggered Non-Orthogonal Grids, Proceedings of the Seventh GAMM Conference on Num. Meth. in Fluid Mech., Notes on Num. Fluid Mech., Volume 20, Vieweg-Verlag, Braunschweig, 1988, pp. 191-198Google Scholar
  7. [7]
    Majumdar, S., Rodi, W., Schönung, B.: Calculation Procedure for Incompressible Three-Dimensional Flows With Complex Boundaries, to be published by Vieweg-VerlagGoogle Scholar
  8. [8]
    Zhu, J., Rodi, W., Schönung, B.: Algebraic Generation of Smooth Grids, Num. Grid Gen. in Comp. Fluid Mech., Ed. Sengupta et al., Pineridge Press, Swansea, UK, 1988, pp. 217–226Google Scholar
  9. [9]
    Naar, M., Schönung, B.: Numerische Gittererzeugung bei Vorgabe von Randwinkeln und Randmaschenweiten, Inst. f. Hydromechanik, Univ. Karlsruhe, Bericht Nr. 644, 1986Google Scholar
  10. [10]
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, McGraw-Hill, New York, 1980zbMATHGoogle Scholar
  11. [11]
    Patankar, S.V., Spalding, D.B.: A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flow, Int. J. Heat Mass Transfer, Vol.15, 1972, pp. 1787–1806zbMATHCrossRefGoogle Scholar
  12. [12]
    Peric, M.: Efficient Semi-Implicit Solving Algorithm for Nine-Diagonal Coefficient Matrix, Numerical Heat Transfer, Vol.11, 1987, pp. 251–279zbMATHCrossRefGoogle Scholar
  13. [13]
    Stone, H.L.: Iterative Solution of Implicit Approximations of Multidimensional, SIAM J. Numer. Anal., Vol.5, No. 3, 1968, pp. 530–558MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    Shaw, G.J., Sivaloganathan, S.: On The Smoothing Properties Of The SIMPLE Pressure Correction Algorithm, Int. J. Num. Meth. Fluids, 8, 1988, pp. 441–461zbMATHCrossRefGoogle Scholar
  15. [15]
    Vanka, S.P.: A Calculation Procedure for Three-Dimensional Steady Recirculating Flows using Multigrid Methods, Comp. Meth. Appl. Mech. Eng., 55, 1986, pp. 321–338zbMATHCrossRefGoogle Scholar
  16. [16]
    Rojas, J., Whitelaw, J.H., Yianneskis, M.: Developing Flow in S-shaped Diffusors, Part 1, Fluids Sect. Rep. FS/83/12, 1983, Mech. Eng. Dep., Imp. Coll. LondonGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • A. Orth
    • 1
  • B. Schönung
    • 1
  1. 1.Institute for HydromechanicsUniversity of KarlsruheKarlsruheGermany

Personalised recommendations