A Posteriori Error Estimators for Adaptive Spectral Element Techniques

  • Catherine Mavriplis
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


Aspects of adaptive spectral element methods are presented with emphasis on the a posteriori error estimators used in the automatic mesh refinement process. The nonconforming formulation of the method is reviewed in an effort to illustrate the various mesh refinement options available. Single mesh a posteriori error estimators are developed for the spectral element method. These estimate the actual error incurred by the discretization on a local per element basis and predict the convergence behaviour of the numerical solution as well. As a result the error estimators serve as criteria in the choice of refinement options. The usefulness of the estimators is demonstrated through examples of Navier-Stokes calculations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patera, A.T., Journal of Computational Physics, 54, 468, 1984.ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Fischer, P.F., Ronquist, E.R. and Patera, A.T., in Parallel Supercomputing-Methods, Algorithms and Applications, Wiley and Sons, 1989.Google Scholar
  3. 3.
    Maday, Y., Mavriplis, C. and Patera, A.T., Proceedings of the Second SIAM Conference on Domain Decomposition Methods, 1988.Google Scholar
  4. 4.
    Mavriplis, C., Ph. D. thesis, MIT, 1989.Google Scholar
  5. 5.
    Dorr, M., Numerische Mathematik, submitted, 1989.Google Scholar
  6. 6.
    Strang, G. and Fix, G., An Analysis of the Finite Element Method, Prentice-Hall, 1973.Google Scholar
  7. 7.
    Babuska, I. and Dorr, M., Numerische Mathematik, 25, 257, 1981.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Berger, M.J. and Oliger, J., Journal of Computational Physics, 53, 484, 1984.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Karniadakis, G.E., Numerical Applied Mathematics, to appear, 1989.Google Scholar
  10. 10.
    Maday, Y. and Patera, A.T., in State-of-the-art Surveys in Computational Mechanics, ASME, 1988.Google Scholar
  11. 11.
    Pullin, D.I. and Perry, A.E., Journal of Fluid Mechanics, 97, 239, 1980.ADSCrossRefGoogle Scholar
  12. 12.
    Mavriplis, C., Fischer, P.F. and Karniadakis, G.E., Tenth Australian Fluid Mechanics Conference, to appear, 1989.Google Scholar
  13. 13.
    Kovasznay, L.I.G., Proceedings of the Cambridge Philosophical Society, 44, 58, 1948.MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Armaly, B.F., Durst, J. et al, Journal of Fluid Mechanics, 127, 473, 1983.ADSCrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • Catherine Mavriplis
    • 1
  1. 1.Program in Applied and Computational MathematicsPrinceton UniversityUSA

Personalised recommendations