Simple Explicit Upwind Schemes for Solving Compressible Flows

  • E. von Lavante
  • A. El-Miligui
  • F. E. Cannizzaro
  • H. A. Warda
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


Several upwind numerical methods for solving the compressible inviscid and viscous flow equations are discussed. Due to their explicit nature, the schemes are very simple and easy to apply to solutions on multi-block structured grids. Their favourable high frequence damping results in good rates of convergence when combined with multigrid procedures. The schemes are optimized using a simple stability and damping factor analysis. Results for three-dimensional test cases are shown and discussed. Attention is payed to the relative efficiencies of these schemes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Pulliam, T.H., and Steger, J.L., “Recent Improvements in Efficiency, Accuracy and Convergence for Implicit, Approximate Factorization Algorithms”, AIAA paper 85-0360.Google Scholar
  2. [2]
    Jameson, A., Schmidt, W. and Turkel, E., “Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes”, AIAA paper 81-1259.Google Scholar
  3. [3]
    Thomas, J.L., van Leer, B. and Walters, R.W., “Implicit Flux-Split Schemes for the Euler Equations”, AIAA paper 85-1680.Google Scholar
  4. [4]
    Chakravarthy, S.R. and Osher, S., “Numerical Experiments with the Osher Upwind Scheme for the Euler Equations”, AIAA Journal, Vol. 21, Sept. 1983, pp. 1241–1248.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    Roe, P.L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes”, Journal of Comp. Physics. Vol. 43, 1981, pp. 357–372.MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. [6]
    Beam, R.M. and Warming, R.F., “An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation Law Form”, Journal of Comp. Physics, Vol. 22, 1976, pp. 87–110.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [7]
    van Leer, B., Tai, Ch. and Powell, K.G., “Design of Optimally Smoothing Multi-Stage Schemes for the Euler Equations”, AIAA paper 89-1933.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • E. von Lavante
    • 1
  • A. El-Miligui
    • 2
  • F. E. Cannizzaro
    • 2
  • H. A. Warda
    • 3
  1. 1.Universität GH EssenEssenWest Germany
  2. 2.Old Dominion UniversityNorfolkUSA
  3. 3.University of AlexandriaAlexandriaEgypt

Personalised recommendations