Advertisement

Solution Adaptive Local Rectangular Grid Refinement for Transonic Aerodynamic flow Problems

  • Michael B. Bieterman
  • John E. Bussoletti
  • Craig L. Hilmes
  • Forrester T. Johnson
  • Robin G. Melvin
  • Satish S. Samant
  • David P. Young
Conference paper
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)

Summary

We describe the use of solution adaptive local grid refinement in a numerical method for solving transonic flow problems about complex three dimensional aircraft configurations. The method is implemented in the TRANAIR code, which has been applied to help solve many practical engineering problems. Attention is focused here on the principal components of the solution adaptive grid algorithms currently being developed and on two applications that demonstrate the capabilities of the algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samant and J.E. Bussoletti, “A Locally Refined Rectangular Grid Finite Element Method,” Report SCA-TR-108-R1, Boeing Computer Services, Seattle, Washington, April, 1989 (to appear in Journal of Computational Physics).Google Scholar
  2. [2]
    D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson and S.S. Samant, “Global Convergence of Inexact Newton Methods for Transonic Flow,” Report SCA-TR-124, Boeing Computer Services, Seattle, Washington, August, 1989.Google Scholar
  3. [3]
    R.G. Melvin, M.B. Bieterman, D.P. Young, F.T. Johnson, S.S. Samant and J.E. Bussoletti, “Local Grid Refinement for Transonic Flow Problems,” pp. 939-950, Vol. 6, Proceedings of the Sixth International Conference on Numerical Methods in Laminar and Turbulent Flow, (C. Taylor, P. Gresho, R.L. Sani and J. Häuser, eds.), Pineridge Press, 1989.Google Scholar
  4. [4]
    J.E. Bussoletti, F.T. Johnson, D.P. Young, R.G. Melvin, R.H. Burkhart, M.B. Bieterman, S.S. Samant and G. Sengupta, “TRANAIR Technology: Solutions for Large PDE Problems,” to appear in Solution of Super Large Problems in Computational Mechanics (J.H. Kane and A.D. Carlson, eds.), Plenum Publishing, 1989.Google Scholar
  5. [5]
    F.T. Johnson, S.S. Samant, M.B. Bieterman, R.G. Melvin, D.P. Young, J.E. Bussoletti and M.D. Madson, “Application of TRANAIR Rectangular Grid Approach to Aerodynamic Analysis of Complex Configurations,” to appear in Proceedings of the 64th Meeting of the AGARD Fluid Dynamics Panel, Specialist’s Meeting on Applications of Mesh Generation to Complex 3-D Configurations, Loen, Norway, 1989.Google Scholar
  6. [6]
    A.W. Chen, M.M. Curtin, R.B. Carlson and E.N. Tinoco, “TRANAIR Applications to Engine/Airframe Integration,” AIAA Paper 89-2165, 1989.Google Scholar
  7. [7]
    A.M. Goodsell, M.D. Madson and J.E. Melton, “TRANAIR and Euler Computations of a Generic Fighter Including Comparisons with Experimental Data,” AIAA Paper 89-0263, 1989.Google Scholar
  8. [8]
    W. Tseng and A. Cenko, “TRANAIR Applications to Fighter Configurations,” AIAA Paper 89-2220, 1989.Google Scholar
  9. [9]
    D.P. Young, R.G. Melvin, F.T. Johnson, J.E. Bussoletti, L.B. Wigton and S.S. Samant, “Application of Sparse Matrix Solvers as Effective Preconditioners,” to appear in SIAM Journal on Scientific and Statistical Computing, pp. 1186–1199, Vol. 10, No. 6, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    H. Bateman, “Irrotational Motion of a Compressible Inviscid Fluid, pp. 816-825, Vol. 16, Proceedings of the National Academy of Sciences, 1930.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • Michael B. Bieterman
    • 1
  • John E. Bussoletti
    • 1
  • Craig L. Hilmes
    • 1
  • Forrester T. Johnson
    • 1
  • Robin G. Melvin
    • 1
  • Satish S. Samant
    • 1
  • David P. Young
    • 1
  1. 1.The Boeing CompanySeattleUSA

Personalised recommendations