Experiences with Explicit Time-Stepping Schemes for Supersonic Flow Fields

  • N. Kroll
  • R. Radespiel
  • C.-C. Rossow
Conference paper
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


The computation of inviscid and viscous one- and two-dimensional supersonic and hypersonic flows using explicit Runge-Kutta time-stepping schemes is investigated. The spatial discretization is based on a cell-vertex finite-volume scheme with central differencing and various time-stepping schemes. Two artificial dissipation models are discussed with respect to accuracy and convergence behaviour. These are the well-known dissipation model based on fourth and second differences of the flow variables and a flux-limited dissipation model with TVD properties. Furthermore, the application of a multigrid scheme for supersonic flows is discussed. It is shown that substantial CPU-time savings are obtained using multigrid for the computation of viscous high-speed flows.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jameson, A., Schmidt, W., Turkel, E.: “Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes”, AIAA 81-1259, (1981).Google Scholar
  2. [2]
    Jameson, A.: “Multigrid Algorithms for Compressible Flow Calculations”, MAE Report 1743, Princeton University, Text of Lecture given at 2nd European Conference on Multigrid Methods, Cologne, Oct. 1985, (1985).Google Scholar
  3. [3]
    Radespiel, R., Rossow, C.-C., Swanson, R.C.: “An Efficient Cell-Vertex Multigrid Scheme for the Three-Dimen-sional Navier-Stokes Equations”, AIAA 89-1953, (1989).Google Scholar
  4. [4]
    Rossow, C.-C., Kroll, N., Radespiel, R., Scherr, S.: “Investigation of the Accuracy of Finite Volume Methods for 2-and 3-Dimensional Flows”, AGARD-CP-437, Vol. 2, P. 14, (1988).Google Scholar
  5. [5]
    Yee, H.C., Klopfer, G.H., Montagne, J.L.: “High-Resolution Shock-Capturing Schemes for Inviscid and Viscous Hypersonic Flows”, NASA-TM 100097, (1988).Google Scholar
  6. [6]
    Rossow, C.-C.: “Berechnung von Strömungsfeldern durch Lösung der Euler-Gleichungen mit einer erweiterten Fi-nite-Volumen Diskretisierungsmethode”, Dissertation, TU Braunschweig, 1988, DLR-FB 89-38, (1989).Google Scholar
  7. [7]
    Hall, M.G.: “Cell Vertex Multigrid Scheme for the Solution of Euler Equations”, Proceedings of the Conference on Numerical Methods for Fluid Dynamics, Reading, U.K., (1985).Google Scholar
  8. [8]
    Kroll, N., Jain, R.K.: “Solution of Two-Dimensional Euler Equations-Experiences with a Finite Volume Code”, DFVLR-FB 87-41, (1987).Google Scholar
  9. [9]
    Roe, P.L.: “Characteristic-Based Schemes for the Euler Equations”, Ann. Rev. Fluid Mech., Vol. 18, pp. 337–365, (1986).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    Li, H., Kroll, N.: “Solution of One-and Two-Dimensional Euler Equations Using a TVD Scheme”, DFLVR-IB, (1988).Google Scholar
  11. [11]
    Radespiel, R., Swanson, R.C.: “An Investigation of Cell Centered and Cell Vertex Multigrid Schemes for the Navier-Stokes Equations”, AIAA 89-0548, (1989).Google Scholar
  12. [12]
    Martinelli, L.: “Calculations of Viscous Flows with a Multigrid Method”, Ph.D. Dissertation, MAE Department, Princeton University, (1987).Google Scholar
  13. [13]
    Jameson, A., Baker, T.J.: “Solution of the Euler Equations for Complex Configurations”, AIAA 83-1929, (1983).Google Scholar
  14. [14]
    Venkatakrishnan, V.: “Computation of Unsteady Transonic Flows over Moving Airfoils”, Ph.D. Dissertation, MAE Department, Princeton University, October 1986.Google Scholar
  15. [15]
    N.N.: Workshop on Hypersonic Flows for Reentry Problems, Co-organized by INRIA and GAMM-SMAI, Antibes (France), 22-26 January 1990.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • N. Kroll
    • 1
  • R. Radespiel
    • 1
  • C.-C. Rossow
    • 1
  1. 1.DLR, Institute for Design AerodynamicsBraunschweigGermany

Personalised recommendations