Advertisement

A Numerical Study of Interfacial Instabilities at High Mach Numbers

  • R. Klein
  • C. D. Munz
  • L. Schmidt
Conference paper
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)

Summary

In the present study we perform direct numerical simulations of high Mach number shear flow instabilities based on the two-dimensional Navier-Stokes equations. To deal with the steep gradients and shocks which emerge after the growth of instabilities we employ modern high resolution shock capturing schemes. We point out some peculiarities arising generally when shock capturing schemes are applied to shear flow stability problems in the limit of vanishing viscosity. Streaklines are calculated to visualize the development of the instabilities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Artola, M., Majda, A.J.: Nonlinear develompent of instabilities in supersonic vortex sheets I: The basic kink modes, Physica 28D (1987), 253–281MathSciNetADSGoogle Scholar
  2. [2]
    Artola, M., Majda, A.J.: Nonlinear development of instabilities in supersonic vortex sheets II: Resonant interaction among kink modes, to appear in Stud. Appl. Math.Google Scholar
  3. [3]
    Dunn, D.W., Lin, C.C.: On the stability of the laminar boundary layer in a compressible fluid, J. Aero. Sci., 22(1955), 455–477MathSciNetzbMATHGoogle Scholar
  4. [4]
    Einfeldt, B.: On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal. 25 (1988), 294–318MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    Harten, A., Lax, P.D., Leer, B. van: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983), 35–62MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Leer, B. van: On the relation between the upwind-differencing schemes of Go-dunov, Engquist-Osher and Roe, SIAM J. Sci. Stat. Comput. 5(1984), 1–21zbMATHCrossRefGoogle Scholar
  7. [7]
    Lessen, M., Fox, J.A., Zien, H.M.: On the inviscid stability of the laminar mixing of two streams of a compressible fluid, J. Fluid Mech. 23 (1965), 355–367MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Lessen, M., Fox, J.A., Zien, H.M.: Stability of laminar mixing of two parallel streams with respect to supersonic disturbances, J. Fluid Mech. 25(1966), 737–742ADSCrossRefGoogle Scholar
  9. [9]
    Miles, J.W.: On the disturbed motion of a plane vortex sheet, J. Fluid Mech. 4 (1958), 538–552MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    Munz, C.D., Schmidt, L.: Numerical simulations of hydrodynamic instabilities with high resolution schemes, Notes on Numerical Fluid Mechanics Vol. 24, (J. Ballmann, R. Jeltsch, Eds.) Vieweg 1989, 456-466Google Scholar
  11. [11]
    Munz, C. D.: On the numerical dissipation of high resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 77 (1988), 18–39MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    Schlichting, H.: Grenzschichttheorie, Verlag G. Braun, Karlsruhe 1958Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • R. Klein
    • 1
  • C. D. Munz
    • 2
  • L. Schmidt
    • 3
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Kernforschungszentrum KarlsruheInstitut für Neutronenphysik und ReaktortechnikKarlsruheGermany
  3. 3.Institut für Angewandte MathematikUniversität KarlsruheKarlsruheGermany

Personalised recommendations