Advertisement

A Fluid—Structure Interaction Model for Heart Valves with a Single Degree of Freedom

  • J. B. A. M. Horsten
  • A. A. van Steenhoven
  • D. H. van Campen
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)

Summary

As a preparatory study for the analysis of the opening and closing behavior of aortic valve prostheses in a viscous fluid flow, a rigid two—dimensional valve, which can rotate around its point of attachment is analyzed. The valve motion and the fluid velocity field are computed. The equations of motion for fluid and structure are iteratively coupled. For the fluid the full unsteady 2D incompressible Navier-Stokes equations are solved. The valve is assumed to be rigid and its inertia is neglected. The equilibrium position of the valve at a point of time is found iteratively, using the Van Wijngaarden—Dekker—Brent method for the root—finding of a nonlinear equation. The numerical method is validated by means of measurement of the interaction forces and the valve displacement in an experimental model. A comparison of numerical and experimental results show that a proper method is developed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Steenhoven, A.A. van & M.E.H. van Dongen, “Model studies of the closing behaviour of the aortic valve”, J. Fluid Mechanics vol 90, pp 21–32, 1979ADSCrossRefGoogle Scholar
  2. [2]
    Steenhoven, A.A. van, Van Duppen, Th.J.A.G., Cauwenberg, J.W.G. and van Renterghem, R.J., “In vitro closing behaviour of Bjork—Shiley, St Jude and Hancock heart valve prostheses in relation to the in vivo recorded aortic valve closure”, J. Miomechanics vol 75, 1982, pp841–848CrossRefGoogle Scholar
  3. [3]
    Bellhouse, B.J. & L. Talbot, “The fluid mechanics of the aortic valve”, J. Fluid Mechanics vol 35, pp 721–735Google Scholar
  4. [4]
    Wippermann, F.K., “On the fluid dynamics of the aortic valve”, J. Fluid Mechanics vol 159, pp 487–501, 1985MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    Peskin, C.S., “Numerical analysis of blood flow in the heart”, J. of Comp. Physics vol 25, pp220–252, 1977MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. [6]
    Belytschko, T, “Fluid—structure interaction”, Computers and structures vol 12, pp459–470, 1980zbMATHCrossRefGoogle Scholar
  7. [7]
    Park, K.C. & C.A. Felippa, “Partitioned analysis of coupled systems”, in: T. Belytschko & T.J.R. Hughes (eds.), Computational methods for transient analysis, North—Holland, Amsterdam, 1983Google Scholar
  8. [8]
    Cuvelier, C., A. Segal & A.A. van Steenhoven, Finite element methods and Navier-Stokes equations, D. Reidel Publishing Company, Dordrecht, The Netherlands, 1986zbMATHCrossRefGoogle Scholar
  9. [9]
    Segal, A., SEPRAN Manual, Ingenieursbureau SEPRA, Delft, The Netherlands, 1989Google Scholar
  10. [10]
    Vosse, F.N. van de, A.A. van Steenhoven, A. Segal & J.D. Janssen, “A finite element analysis of the unsteady two—dimensional Navier-Stokes equations”, Int. J. of Numerical Methods in Fluids vol 6, pp427–443, 1986ADSzbMATHCrossRefGoogle Scholar
  11. [11]
    Vosse, F.N. van de, A.A. van Steenhoven, A. Segal & J.D. Janssen, “A finite element element analysis of the steady laminar entrance flow in a 90° curved tube”, Int. J. of Numerical Methods in Fluids vol 9, pp275–287, 1989ADSzbMATHCrossRefGoogle Scholar
  12. [12]
    Press, W.H., B.P. Flannery, S.A. Teukolsky & W.T. Vetterling, Numerical Recipes, Cambridge University Press, New York, 1986Google Scholar
  13. [13]
    Brent, R.P., Algorithms for minimization without derivatives, Prentice—Hall, Englewood Cliffs, N.J., USA, 1973zbMATHGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • J. B. A. M. Horsten
    • 1
  • A. A. van Steenhoven
    • 1
  • D. H. van Campen
    • 1
  1. 1.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations