Non-Equilibrium Hypersonic flow Computations by Implicit Second-Order Upwind Finite-Elements

  • N. Glinsky
  • L. Fezoui
  • M. C. Ciccoli
  • J.-A. Désidéri
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


Second-order implicit schemes are constructed for the solution of steady hypersonic chemically-reacting inviscid flows. In a standard non-equilibrium model accounting for 5 species (N2, O2, NO, N and O), the Euler equations are coupled with species convection equations. In a fractional-step approach, the set of fluid motion equations and the set of chemical kinetics equations are alternatively time-marched, both sets implicitly. The basic approximation method employs a finite-volume formulation applicable to arbitrary Finite-Element-type unstructured triangulations. The accuracy is enhanced by the M.U.S.C.L. extrapolation, and quasi-second-order solutions are obtained by slope-limitation or TVD-averaging. The merits of the various proposed approximations are evaluated by numerical experiments, computing the hypersonic flows over a cylinder and around a model geometry for the HERMES space shuttle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J-A. Desideri, N. Glinsky, E. Hettena, “Hypersonic Reactive Flow Computations”, Computers and Fluids, 1989, to appear.Google Scholar
  2. [2]
    J-A. Desideri, L. Fezoui, N. Glinsky, E. Hettena, J. Periaux, B. Stoufflet, “Hypersonic Reactive Flow Computations around Space-Shuttle-Like Geometries by 3-D Upwind Finite Elements”, AIAA Paper No. 89-0657, AIAA 27th Aerospace Sciences Meeting, Jan. 9-12, 1989/Reno, Nevada.Google Scholar
  3. [3]
    Y. P. Raizer, Y. B. Zeldovich, Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena, Academic Press, New York, 1965.Google Scholar
  4. [4]
    C. Park, “On the Convergence of Chemically Reacting Flows”, AIAA Paper 85-0247, AIAA 23rd Aerospace Sciences Meeting, Jan. 14-17, 1985/Reno, Nevada.Google Scholar
  5. [5]
    B. van Leer, “Flux-Vector Splitting for the Euler Equations”, Lecture Notes in Physics, Vol. 170, 507–512, 1982.ADSCrossRefGoogle Scholar
  6. [6]
    B. Larrouturou, L. Fezoui, “On the Equation of Multi-Component Perfect or Real Gas Inviscid Flow”, Nonlinear Hyperbolic Problems, Carasso, Charrier, Hanouzet and Joly Eds., Lecture Notes in Mathematics, Spring er-Verlag, Heidelberg, 1989, to appear.Google Scholar
  7. [7]
    B. Stoufflet, “Implicit Finite-Element Methods for the Euler Equations”, Proc. of the INRI A Workshop on “Numerical Methods for Compressible Inviscid Fluids”, Dec. 7-9, 1983, Rocquencourt (France), Numerical Methods for the Euler Equations of Fluid Dynamics, Angrand F. et al. Eds., SIAM (1985).Google Scholar
  8. [8]
    J-A. Desideri, A. Dervieux, “Compressible Flow Solvers Using Unstructured Grids”, Von Karman Institute for Fluid Dynamics, Lecture Series 1988-05, Computational Fluid Dynamics, March 7-11, 1988.Google Scholar
  9. [9]
    B. van Leer, “Towards the Ultimate Conservative Difference Scheme III.: Upstream-Centered Finite-Difference Schemes for Ideal Compressible Flow”, J. Comp. Phys. 23, 263–275 (1977).ADSzbMATHCrossRefGoogle Scholar
  10. [10]
    J. L. Montagne, H. C. Yee, M. Vinokur, “Comparative Study of High-Resolution Shock-Capturing Schemes for Real Gases”, NASA TM 10004, 1987.Google Scholar
  11. [11]
    B. Van Leer, “Computational Methods fo Ideal Compressible Flow”, Von Karman Institute for Fluid Dynamics, Lecture Series 1983-04, Computational Fluid Dynamics, March 7-11, 1983.Google Scholar
  12. [12]
    M.-C. Ciccoli, L. Fezoui, J-A. Desideri, “Efficient Iterative Schemes for Hypersonic Non-Equilibrium Flow”, INRI A report, to appear.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • N. Glinsky
  • L. Fezoui
  • M. C. Ciccoli
  • J.-A. Désidéri
    • 1
  1. 1.Centre de Sophia AntipolisInstitut National de Recherche en Informatique et en AutomatiqueValbonneFrance

Personalised recommendations