Assessment and Improvement of Fast Euler Solver

  • Bernardo Favini
Conference paper
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


A generalization of the Fast Solver of G. Moretti [1] for the two-dimensional Euler equations written for generalized curvilinear coordinates is presented. The normalized contravariant base is introduced. The Euler equations are recast in diagonalized form and discretized in time in implicit Δ-form. A system of four pseudo compatibility equations is obtained by means of local one-dimensional analysis. The integration of this system requires the inversion of four bidiagonal matrices instead of 3 × 3 block-tridiagonal matrices. Preliminary results for subsonic flows are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Moretti, “Fast Euler Solver for Steady One-Dimensional Flows”, Computers & Fluids, vol. 13, 1985, pp. 61–81.ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    G. Moretti, “A Fast Euler Solver for Steady Flows”, Proc. AIAA 6th Computational Fluid Dynamics Conference, Danvers, MA, 1983, pp. 357-362.Google Scholar
  3. 3.
    M. Onofri, D. Lentini, “Fast Numerical Solver for Transonic Flows”, Computers & Fluids, 17, 1, 1989, pp.Google Scholar
  4. 4.
    A. Dadone, G. Moretti, “Fast Euler Solver for Transonic Airfoils. Part I: Theory”, AIAA Journal, 26,4, 1988, pp. 409–416.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    G. Moretti, M. Onofri, “Fast Euler Solver for Blunt Body Flows, Poly M/AE Report no. 86-13.Google Scholar
  6. 6.
    G. Moretti, “A Technique for Integrating Two-Dimensional Equations, Computers & Fluids, 15, 1986, pp. 59–75.ADSCrossRefGoogle Scholar
  7. 7.
    L. Zannetti, B. Favini, “About the Numerical Modeling of Multidimensional Unsteady Compressible Flows”, Computers & Fluids, 17,1, 1989, pp. 289–299.ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    R.M. Beam, R.F. Warming, “An Implicit Factored Scheme for the Compressible Navier-Stokes Equations”, AIAA Journal, 16, 1978, pp. 393–402.ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    B. Favini, R. Marsilio, L. Zannetti, “Numerical Approximation of Boundary Conditions for Initial-Boundary-Value Problem”, proc. ISCFD-Nagoya, Nagoya, 1989.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1990

Authors and Affiliations

  • Bernardo Favini
    • 1
  1. 1.Dipartimento di Meccanica e AeronauticaUniversità di Roma, “La Sapienza”Italy

Personalised recommendations