Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 35))

  • 79 Accesses

Summary

A path midway between pure analysis and sheer number-crunching is provided by the technique of extending a regular perturbation series to high order by computer, and then analyzing and improving the results. This three-step process has, during the past two decades, been applied to perhaps a hundred problems in many branches of fluid mechanics. However, there has been no great rush to follow this route. Some researchers assert that it is not a part of computational fluid mechanics. Here we survey the technique using the flat-plate boundary layer as a simple example, consider the reasons for its relative neglect, and discuss prospects for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Dyke, M.: Extension of Goldstein’s series for the Oseen drag of a sphere.1 Fluid Mech 44 (1970) 365–372

    Article  ADS  MATH  Google Scholar 

  2. Van Dyke, M: Computer-extended series, Ann. Rev Fluid Mech. 16 (1984) 237–309, Annual Reviews Inc., Palo Alto

    Article  ADS  Google Scholar 

  3. Gaunt, D. S. & Guttmann, A J.: Asymptotic analysis of coefficients, Phase Transitions and Cntical Phenomena 3 (1974) 287–309, Academic Press

    Google Scholar 

  4. Guttmann, A J.: Asymptotic analysis of power series, Phase Transitions and Critical Phenomena 13 (1989) 1–234, Academic Press

    Google Scholar 

  5. Adler, J, Meir, Y, Amnon, A., Harris, A B. & Klein, L: Low-concentration series in general dimensions, J.Sfatisiica/Phya 58 (1990) 511–538

    ADS  MATH  Google Scholar 

  6. Munk, M. & Rawling, G.: Calculation of compressible subsonic flow past a circular cylinder, US Nay Orifinance Lail NA TtORDRep. 2477 (1952)

    Google Scholar 

  7. Van Dyke, M. & Guttmann, A J.: Subsonic potential flow past a circle and the transonic controversy, f. Austral Math Soc, Ser. B 24 (1983) 243–261

    MATH  Google Scholar 

  8. Guttmann, A J. & Thompson, C J.: Subsonic potential flow and the transonic controversy.Thbepubl/shed

    Google Scholar 

  9. Domb, C and Sykes, M. F.: On the susceptibility of a ferromagnetic above the Curie point, 1 vcz Roy Sac LondonA 240 (1957) 214–228

    MATH  Google Scholar 

  10. Schlichting H: andxmdary~/ayrrThe ty,7th ed. (1979), McGraw-Hill

    Google Scholar 

  11. Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung Z Math a Phys 56 (1908) 1–37; English transL NACA Tech Memo 1256

    Google Scholar 

  12. Richardson, S.: On Blasius’s equation governing flow in the boundary layer on a flat plate, Phvc Camlx Ph O. Soc 74 (1978)179–184

    Google Scholar 

  13. Schwartz, L W: Computer extension and analytic continuation of Stokes’ expansion for gravity waves, J. Fluid Mech. 62 (1974) 553–578

    Google Scholar 

  14. Schwartz, L W. & Fenton, J. D.: Strongly nonlinear waves, Ann. Rev Fhu/d Mech 44 (1982) 39–60, Annual Reviews Inc, Palo Alto

    Google Scholar 

  15. Guderley, G: Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse, Lutï/ähicrschímg 19 (1942) 302–312

    MathSciNet  Google Scholar 

  16. Van Dyke, M. & Guttmann, A J.: The converging shock wave from a spherical or cylindrical piston, J. Tad Mech 120 (1982) 451–462

    ADS  MATH  Google Scholar 

  17. Van Dyke, M: Extended Stokes series: laminar flow through a loosely coiled pipe, J. Fluid Mech 86 (1978) 129–145

    Article  ADS  MATH  Google Scholar 

  18. Ramshankar, R and Sreenivasaan, K. R.: A paradox concerning the extended Stokes series solution for the pressure drop in coiled pipes, Phys Fhddc 31 (1988) 1339–1347

    ADS  Google Scholar 

  19. Herbert, T. & Feng H. Y.: Flows in a loosely coiled pipe and their stability, and Bull Amer Phys Soc 34 (1989) 2319

    Google Scholar 

  20. Dingle, R B.: Asymptotic Etpansio s: Their Derivation and Intetpmtation (1973) AcademícPress

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Fachmedien Wiesbaden

About this paper

Cite this paper

Van Dyke, M. (1992). Is Computer Extension of Series a Part of CFD?. In: Vos, J.B., Rizzi, A., Ryhming, I.L. (eds) Proceedings of the Ninth GAMM-Conference on Numerical Methods in Fluid Mechanics. Notes on Numerical Fluid Mechanics (NNFM), vol 35. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-13974-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-13974-4_3

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07635-1

  • Online ISBN: 978-3-663-13974-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics