Advertisement

Design of Linear Time-Invariant Feedback Systems with Minimized Comparison Sensitivity Function

  • Irmfried Hartmann
  • Werner Lange
  • Rainer Poltmann
Chapter
  • 30 Downloads
Part of the Advances in Control Systems and Signal Processing book series (ACSSP, volume 6)

Abstract

The process to be controlled shall be representable by means of a linear discrete-time state space model
(2.1)
, wherein:

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hartmann, I.: “Digitale Regelkreise” TU Berlin - Dokumentation Weiterbildung, Heft 7, 1982Google Scholar
  2. [2]
    Frank, P.M.: “Empfindlichkeitsanalyse dynamischer Systeme” R.Oldenbourg Verlag, München/Wien 1976Google Scholar
  3. [3]
    Davison, E.J.: “The robust control of a servomechanism problem for linear time-invariant multivariable systems” IEEE Trans.Automat.Contr., Vol.AC-21, pp. 25–34, 1976Google Scholar
  4. [4]
    Young, P.C. and Willems, J.C.: “An approach to the linear multivariable servomechanism problem” Int.J.Contr., Vol. 15, pp. 961–979, 1972MathSciNetCrossRefGoogle Scholar
  5. [5]
    Noldus, E.: “Disturbance rejection using dynamic output feedback” IEEE Proc., Vol.129, Pt.D, pp. 76–80, 1982Google Scholar
  6. [6]
    Johnson, C.D.: “Accommodation of external disturbances in linear regulator and servomechanism problems” IEEE Trans.Automat.Contr., Vol.AC-16, pp. 635–644, 1971Google Scholar
  7. [7]
    Mikolcic, H.: “Ein PI-Mehrgrößenregler mit Störgrößenaufschaltung für einen stromrichtergespeisten Antrieb” Mitteilung in der Regelungstechnik 30, S. 326, 1982Google Scholar
  8. [8]
    Müller, P.C. und Lückel, J.: “Zur Theorie der Störgrößenaufschaltung in linearen Mehrgrößenregelkreisen” Regelungstechnik 25, S. 54–59, 1977Google Scholar
  9. [9]
    Sebakhy, O.A. and Wonham, W.M.: “A design procedure for multivariable regulators” Automatica, Vol. 12, pp. 467–478, 1976MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Luenberger, D.G.: “Observers for multivariable systems” IEEE Trans.Automat.Contr., Vol.AC-11, pp. 190–197, 1966Google Scholar
  11. [11]
    Fortmann, T.E. and Williamson, D.: “Design of low-order observers for linear feedback control laws” IEEE Trans.Automat.Contr., Vol.AC-17, pp. 301–308, 1972Google Scholar
  12. [12]
    Luenberger, D.G.: “Canonical forms for linear multivariable systems” IEEE Trans.Automat.Contr., Vol. AC-12, pp. 290–293, 1967Google Scholar
  13. [13]
    Hartmann, I.: “Algorithmen in dynamischen Systemen” TU Berlin, Vorlesungsskript, 1976Google Scholar
  14. [14]
    Fosha, C.E. and Elgerd, 0.I.: “The megawatt-frequency control problem: a new approach via optimal control theory” IEEE Trans.Power App.Sys., Vol.PAS-89, pp. 563–571, 1970Google Scholar
  15. [15]
    Poltmann, R.: “Ein optimaler Empfindlichkeitsentwurf für lineare zeitdiskrete Mehrgrößenregelkreise” Dissertation TU Berlin, 1984Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1986

Authors and Affiliations

  • Irmfried Hartmann
    • 1
  • Werner Lange
    • 2
  • Rainer Poltmann
    • 2
  1. 1.Technische Universität BerlinBerlin 12West-Germany
  2. 2.Technische UniversitätBerlin 12West Germany

Personalised recommendations