Advertisement

System Theoretical Background

  • Irmfried Hartmann
  • Werner Lange
  • Rainer Poltmann
Chapter
  • 29 Downloads
Part of the Advances in Control Systems and Signal Processing book series (ACSSP, volume 6)

Abstract

This book is concerned with the design of insensitive and robust linear time-invariant multivariable feedback systems. Originally, the term robustness of feedback systems was refered to reduce the influence of large plant perturbations where as the term sensitivity concerns the effects of small uncertainties. But in this explanation the sensitivity would be included in the term robustness and really there is hardly a difference.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.B.Cruz, J.S.Freudenberg and D.P.Looze:“A relationship between sensitivity and stability of multivariable feedback systems”, JACC 1980-WP8-C.Google Scholar
  2. [2]
    P.Brunowsky:“A classification of linear controllable systems”, Kybernetica,Cislo,pp.173–188,1970.Google Scholar
  3. [3]
    C.A.Desoer and M.Vidyasagar:“Feedback systems; input-output properties”, Academic Press New York 1975.Google Scholar
  4. [4]
    C.A.Desoer and Y.T.Wang:“On the generalized Nyquist stability criterion”, JACC 1979-TP5–2:30, pp.580–586.Google Scholar
  5. [5]
    A.Dickman and R.Sivan:“On the robustness of multivariable linear feedback systems”, IEEE Trans.Automat.Contr.,Vol.AC-30,No.4,pp.401–404,1985.Google Scholar
  6. [6]
    J.C.Doyle and G.Stein:“Multivariable feedback design: Concepts for a classical/modern synthesis”, IEEE Trans.Automat.Contr.,Vol.AC-26,No.1, pp.4–16, 1981.Google Scholar
  7. [7]
    B.A.Francis:“On robustness of the stability feedback systems”, IEEE Trans.Automat.Contr.,Vol.AC-25, No.4, pp.817–818, 1980.Google Scholar
  8. [8]
    T.Kailath:“Linear systems”, Prentice-Hall, Englewood Cliffs, N.J., 1980.Google Scholar
  9. [9]
    H.W.Knobloch and H.Kwakernaak:“Lineare Kontrolltheorie” Springer-Verlag Berlin 1985.Google Scholar
  10. [10]
    A.J.Laub:“An inequality and some computations related to robust stability of linear dynamic systems”, IEEE Trans.Automat.Contr.,Vol.AC-24, No.2, pp. 318–320.Google Scholar
  11. [11]
    D.W.Nuzman and N.R.Sandell,JR.:“An inequality in robustness analysis of multivariable systems”, IEEE Trans.Automat.Contr.,Vol.AC-24,No.3, pp.492–493, 1979.Google Scholar
  12. [12]
    D.H.Owens and A.Raya:“Robust stability of Smith predictor controllers for time-delay systems”, IEE Proc., Vol.129, No.6, pp.298–304, 1982.Google Scholar
  13. [13]
    D.H.Owens and A.Chotai:“Robust stability of multivariable feedback systems with respect to linear and nonlinear feedback perturbations”, IEEE Trans. Automat.Contr.,Vol.AC-27, No.1,pp.254–256,1982.Google Scholar
  14. [14]
    V.M.Popov:“Invariant description of linear time-invariant controllable systems”, SIAM J.Control, Vol.10,pp.252–264, 1972.Google Scholar
  15. [15]
    M.K.Sain and A.Ma:“Multivariable synthesis with reduced comparison sensitivity”, JACC 1980-WP8-B.Google Scholar
  16. [16]
    G.Zames:“Feedback and optimal sensitivity; model reference transformations, multiplicative semi-norms and approximate inverses”, IEEE Trans. Automat.Contr.,Vol.AC-26,No.2,pp.301–320,1981.Google Scholar
  17. [17]
    G.Ludyk:“Stability of time-variant discrete-time systems”, Vol.5, series: Advances in Control Systems and Signal Processing, Vieweg Braunschweig/ Wiesbaden 1985.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1986

Authors and Affiliations

  • Irmfried Hartmann
    • 1
  • Werner Lange
    • 2
  • Rainer Poltmann
    • 2
  1. 1.Technische Universität BerlinBerlin 12West-Germany
  2. 2.Technische UniversitätBerlin 12West Germany

Personalised recommendations