Effective Programming of Finte Element Methods for Computational Fluid Dynamics on Supercomputers

  • R. Löhner
  • K. Morgan
  • O. C. Zienkiewicz
Part of the Notes on Numerical Fluid Mechanics book series (NNFM, volume 12)


The effective programming of Finite Element Methods for CFD on vector-machines is discussed. It is shown, that for unstructured grids the performance observed on this class of machine depends heavily of the availability of hardware Gather/Scatter. Timings obtained for a 3-D Euler code are presented for the CYBER-205, CRAY-XMP11 and CRAY-XMP48.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WOODWARD, P., COLELLA, P.: “The Numerical Solution of 2D Fluid Flow with Strong Shocks”, J. Comp.Phys. 54, 115–173 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    SMITH, R.E.: “Two Boundary Grid Generation for the Solution of the 3-D Compressible Navier-Stokes Equations”, Nasa TM 83123(1981).Google Scholar
  3. 3.
    SPRADLEY, L.W., STALNAKER, J.F., RATLIFF, A.W.: “ Solution of Three-Dimensional Navier-Stokes Equations on a Vector Processor”, AIAA J.19(10), 1302–1308(1980).ADSCrossRefGoogle Scholar
  4. 4.
    BOOK, D.L.(edr.): “Finite Difference Techniques for Vectorized Fluid Dynamics Calculations”, Springer Series in Computational Physics (1981).zbMATHGoogle Scholar
  5. 5.
    ROACHE, P.:“Computational Fluid Dynamics”, Hermosa Publishers (1970).Google Scholar
  6. 6.
    DONEA, J.:“A Taylor-Galerkin Method for Convective Transport Problems”, Int.J.Num.Meth.Eng. 20, 101–119(1984).zbMATHCrossRefGoogle Scholar
  7. 7.
    LÖHNER, R., MORGAN, K., ZIENKIEWICZ, O.C.: “The Solution of Non-Linear Hyperbolic Equation Systems by the Finite Element Method”, Int.J.Num.Meth.Fluids 4, 1043–1063(1984).zbMATHCrossRefGoogle Scholar
  8. 8.
    LAPIDUS, A.: “A Detached Shock Calculation by Second-Order Finite Differences”, J.Comp.Phys.2, 154–177(1963).ADSCrossRefGoogle Scholar
  9. 9.
    LÖHNER, R., MORGAN, K., PERAIRE, J.:”A Simple Extension to Multidimensional Problems of the Artificial Viscosity Model due to Lapidus”, to appear in Comm.Appl.Num.Meth.(1985).Google Scholar
  10. 10.
    DIEKKAMPER, R.: “Vectorized Finite Element Analysis of Nonlinear Problems i.n Structural Dynamics”, Proc. “Parallel Computing 83” Conf. (M. Feilmeier, G. Joubert and U. Sehende eds.), 293–298, North-Holland (1984).Google Scholar
  11. 11.
    LÖHNER, R. , MORGAN, K.: “Finite Element Methods on Supercomputers : The Scatter-Problem”, Proc. Numeta’85 Conf. (J. Middleton and G. Pande eds.), 987–990, A.A. Balkeema (1985).Google Scholar
  12. 12.
    LÖHNER, R., MORGAN, K., ZIENKIEWICZ, O.C.: “The Use of Domain Splitting with an Explicit Hyperbolic Sol ver”, Comp. Meth.Appl.Mech.Eng.45, 313–329(1984).zbMATHCrossRefGoogle Scholar
  13. 13.
    LÖHNER, R., MORGAN, K. ZIENKIEWICZ, O.C.: An Adaptive Finite Element Method for High Speed Compressible Flow, Lecture Notes in Physics 218, pp 388–392, Springer (1985).Google Scholar
  14. 14.
    LÖHNER, R., MORGAN, K., ZIENKIEWICZ, O.C.: An Adaptive Finite Element Procedure for Compressible High Speed Flows, Comp.Meth.Appl.Mech.Eng.(1985). To appear.Google Scholar
  15. 15.
    LÖHNER, R., MORGAN, K., ZIENKIEWïCZ, O.C.: “Adaptive Grid Refinement for the Compressible Euler Equations”, chapter in “Accuracy Estimates and Adaptivity for Finite Elements”, Wiley, Chichester, 1985 (to appear).Google Scholar
  16. 16.
    LÖHNER, R., MORGAN, K.: “Unstructured Multigrid Methods: First Experiences”, in Proc. Conf. on Num.Meth. in Thermal Problems, Pineridge Press, Swansea 1985.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1986

Authors and Affiliations

  • R. Löhner
    • 1
  • K. Morgan
    • 1
  • O. C. Zienkiewicz
    • 1
  1. 1.Institute for Numerical Methods in EngineeringUniversity College of SwanseaSwanseaWales, UK

Personalised recommendations