Skip to main content

Development of an Atmospheric Mesoscale Model on a CRAY — Experiences with Vectorization and Input/Output

  • Chapter
The Efficient Use of Vector Computers with Emphasis on Computational Fluid Dynamics

Part of the book series: Notes on Numerical Fluid Mechanics ((NNFM,volume 12))

  • 97 Accesses

Summary

Some concepts and experiences are discussed from the present development of a three-dimensional model for atmospheric flows in the mesoscale (typical lengthscale L ≤ 250 km) on the CRAY-1/S computer of the DFVLR. After an introduction to the range of physical problems and adequate numerical schemes to tackle them two more technical aspects are dealt with. First, an integration algorithm, which minimizes input/output operations, is introduced together with figures that show the capabilities of different software and hardware components for input/output. Then, the emphasis goes to the pressure solution as an important subtask, the vectorization capabilities of existing software and gains due to its restructuration. Calculations involving the entire code (dealing with the Taylor-Green vortex in a 64×36×64 grid) and a discussion of the technical aspects’ impact on three dimensional Navier-Stokes codes conclude the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. PIELKE, R.A.: “Mesoscale Meterological Modeling”, Academic Press, Orlando (1984).

    Google Scholar 

  2. SQMIESKI, F.: “Numerical Simulation of Mesoscale Flow over Ramp-Shape Orography with Application of a Special Lateral Boundary Scheme”, Mon. Wea. Rev. 112 (1984), pp. 2293–2302.

    Article  ADS  Google Scholar 

  3. HOINKA, K.-P.: “A comparison of numerical simulations of hydrostatic flow over mountains with observations”, Mon. Wea, Rev. 113 (1985), in press.

    Google Scholar 

  4. WENDLING, P.: “A three dimensional mesoscale simulation of topographically forced rainfall on the northern side of the Alps”, Ann. Meteorol. (N.F.) Nr. 19 (1982), p. 27.

    Google Scholar 

  5. SCHUMANN, U., VOLKERT, H.: “Three-dimensional mass- and momentum-consistent Helmholtz-equation in terrain-following coordinates”, in: W. Hackbusch (Ed.), “Efficient Solutions of Elliptic Systems”, Vieweg Series “Notes on Numer. Fluid Mech.” Vol. 10, Braunschweig (1984), pp. 109–131.

    Google Scholar 

  6. CLARK, T.L.: “A small-scale dynamic model using a terrain-following coordinate transformation”, J. Comput. Phys. 24 (1977), pp. 186–214.

    Article  ADS  MATH  Google Scholar 

  7. SCHUMANN, U.: “Dynamische Datenblock-Verwaltung in Fortran”, KFK External report 8/74–2, Karlsruhe (1974).

    Google Scholar 

  8. KORDULLA, W.: “On the efficient use of large data bases in the numerical solution of the Navier-Stokes equations on a CRAY computer”, this volume (1985).

    Google Scholar 

  9. GENTZSCH, W.: “Summary of the workshop”, this volume (1985),

    Google Scholar 

  10. THOLE, C.-A.: “Multigrid for anisotropic operators in three dimensions”, contribution to the Workshop “INRIA — GMD”, Versailles, January 21–23, 1985.

    Google Scholar 

  11. WILHELMSON, R, and ERICKSEN, J.: “Direct solutions for Poisson’s equation in three dimensions”, J. Comp. Phys. 25 (1977), pp. 319–331.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. SCHUMANN, U. and SWEET, R.: “A direct method for the solution of Poisson’s equation with Neumann boundary conditions on a staggered grid of arbitrary size”, J. Comp. Phys. 20 (1976), pp. 171–182.

    Article  MathSciNet  ADS  Google Scholar 

  13. SCHMIDT, H., SCHUMANN, U., ULRICH, W., VOLKERT, H.: “Three-dimensional direct and vectorized elliptic solvers for various boundary conditions”, DFVLR-Mitteilung 84/15, (1984).

    Google Scholar 

  14. BATCHELOR, G., (Ed.): “Scientific papers of Sir G. I. Taylor”, Vol. II, Cambridge University Press (1960), Paper 16: The decay of eddies in a fluid (written in 1923).

    Google Scholar 

  15. SMOLARKIEWICZ, P.: “A fully multidimensional positive definite advec-tion transport algorithm with small implicit diffusion”, J. Comp. Phys. 54 (1984), pp. 325–362.

    Article  ADS  Google Scholar 

  16. VOLKERT, H. and SCHUMANN, U.: “Development of an atmospheric mesoscale model — first results of the version in terrain following coordinates”, Proc. Sixth GAMM Conf. on Num. Meth. in Fluid Mech., Göttingen, 25–27 Sept. 1985, Vieweg Series “Notes on Numer. Fluid Mech.”, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Volkert, H., Schumann, U. (1986). Development of an Atmospheric Mesoscale Model on a CRAY — Experiences with Vectorization and Input/Output. In: Schönauer, W., Gentzsch, W. (eds) The Efficient Use of Vector Computers with Emphasis on Computational Fluid Dynamics. Notes on Numerical Fluid Mechanics, vol 12. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-13912-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-13912-6_15

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08086-0

  • Online ISBN: 978-3-663-13912-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics