Advertisement

N3S : A 3D Finite Element Code for Fluid Mechanics; Emphasis to Vectorization and Sparse Matrix Problems

  • Ph. Hemmerich
  • J. Goussebaile
  • J. P. Gregoire
  • P. Lasbleiz
  • ELECTRICITE de FRANCE
Part of the Notes on Numerical Fluid Mechanics book series (NNFM, volume 12)

Abstract

N3S is a three-dimensional incompressible Navier-Stokes finite element code developped at EDF for the study of industrial flows*). The treatment of complex geometries, the number of nodes (up to 50000) led us to decompose the problem at different levels (geometry, algorithm and numeric). The use of the splitting up technique allows a specific and efficient treatment to be applied to each part of the Navier-Stokes equations:
  • method of characteristics for the advection terms,

  • conjugate gradient method for the diffusion-continuity part.

Keywords

Conjugate Gradient Method Finite Element Code Incomplete Cholesky Factorization Industrial Flow Triangular Linear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    J.P. BENQUE, P. ESPOSITO, G. LABADIE — New Decomposition Finite Element Methods for the Stokes Problem and the Navier-Stokes Equations Numerical Methods in Laminar and Turbulent Flow (August 1933, Seattle, USA).Google Scholar
  2. [2]
    J.P. GREGOIRE, J.P. BENQUE, P. LASBLEIZ, J. GOUSSEBAILE — 3D Industrial Flows Calculations by Finite Element Method 9th International Conference on Numerical Methods in Fluid Dynamics (June 1984, Saclay, France).Google Scholar
  3. [3]
    J.P. BENQUE, J.P. GREGOIRE, A. HAUGUEL, M. MAXANT — Application des méthodes de decomposition aux calculs numériques en hydraulique industrielle — 6ème Colloque International sur les méthodes de calculs Scientifiques et Techniques (Décembre 1983, Versailles, France).Google Scholar
  4. [4]
    J. GOUSSEBAILE, J.P. GREGOIRE, A. HAUGUEL — Iterative Stokes Solvers and Splitting Technics for Industrial Flows — 5th International Symposium on Finite Element Methods in Flow Problems (January 1984, Austin, USA).Google Scholar
  5. [5]
    J. GOUSSEBAILE, A. JACOMY, A. HAUGUEL, J.P. GREGOIRE — A Finite Element Algorithm for Turbulent Flow Processing a K-ε Model — Numerical Methods in Laminar and Turbulent Flow (July 1985, Swansea, U.K.).Google Scholar
  6. [6]
    M.A. AJIZ, A. JENNINGS — A Robust Incomplete Choleski — Conjugate Gradient Algorithm — International Journal of Numerical Methods in Engineering (vol. 20, pp. 949–966, 1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [7]
    P. GILL, W. MURRAY, M. SAUNDERS, M. WRIGHT — Sparse Matrix Methods in Optimization — Siam Journal (vol. 5, n°3, September 1984).Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1986

Authors and Affiliations

  • Ph. Hemmerich
    • 1
  • J. Goussebaile
    • 1
  • J. P. Gregoire
    • 1
  • P. Lasbleiz
    • 1
  • ELECTRICITE de FRANCE
    • 1
  1. 1.Département Mécanique et Modèles NumériquesDépartement Laboratoire National d’HydrauliqueFrance

Personalised recommendations