Skip to main content

Analogies between Oscillation and Rotation of Bodies Induced or Influenced by Vortex Shedding

  • Chapter
Book cover Vortex Motion

Abstract

Both rotation and oscillation are intrinsically periodic. Such periodicity may be induced on a body through vortex shedding; or, if a body is forced to rotate or oscillate, vortex shedding can strongly influence the periodic characteristics of the flow. This paper discusses various degrees of analogies or similarities between rotating and oscillating bodies with vortex shedding in a parallel flow, with respect to both the physical phenomena involved and the mathematical modelling. The latter is performed with the aid of the nonlinear oscillator concept or, more realistically, by solutions of the field equations. It is argued that, qualitatively, a fifth-order polynomial for the damping term is necessary in the oscillator model to simulate vortex-shedding effects. The feasibility of solving the Navier-Stokes equations for those complex flow phenomena is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aristotle’s Physics, transl. by R. Hope. University of Nebraska Press, Lincoln, 1961, 167.

    Google Scholar 

  2. Lamb, H., Hydrodynamics. Sixth ed., Dover, New York, 1945, 174.

    Google Scholar 

  3. Riabouchinsky, D.P., Thirty years of theoretical and experimental research in fluid mechanics. J. Roy. Aer. Soc. 39 (1935), 282 and 377.

    Google Scholar 

  4. Lugt, H.J., Vortex Flow in Nature and Technology. In German: Braun, Karlsruhe, 1979. In English: to be published by Wiley Interscience, New York, in spring 1983.

    Google Scholar 

  5. Glauert, H., The rotation of an aerofoil about a fixed axis. Advisory Committee for Aeronautics, Rep., and Memo. No. 595, March 1919, 443.

    Google Scholar 

  6. Parkinson, G.V. and Brooks, N.P.H., On the Aeroelastic Instability of Bluff Cylinders. J. Appl. Mech., June 1961, 252.

    Google Scholar 

  7. Blevins, R.D., Flow-induced vibration. Van Nostrand Reinhold Co., 1977.

    Google Scholar 

  8. Den Hartog, J.P., Transmission Line Vibration Due to Sleet. Trans. AIEE 51 (1932), 1074.

    Google Scholar 

  9. Lugt, H.J., Autorotation. Ann. Rev. Fluid Mech., Ann. Reviews, Inc., Palo Alto, California, Vol. 15, 1983.

    Google Scholar 

  10. Lugt, H.J., Autorotation of an elliptic cylinder about an axis perpendicular to the flow. J. Fluid Mech. 99 (1980), 817.

    Article  ADS  Google Scholar 

  11. Sarpkaya, T., Vortex-Induced Oscillations. J. Appl. Mech. 46 (1979), 241.

    Article  ADS  Google Scholar 

  12. Nakamura, Y. and Mizota, T., Unsteady Lifts and Wakes of Oscillating Rectangular Prisms. J. Eng. Mech. Div., Dec. 1975, 855.

    Google Scholar 

  13. Ericsson, L.E., Kârmân Vortex Shedding and the Effect of Body Motion. AIAA J. 18 (1980), 935.

    Article  ADS  Google Scholar 

  14. Hertel, H., Structure-Form-Movement. Reinhold Publ. Co., 1966.

    Google Scholar 

  15. Katz, J. and Weihs, D., Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility. J. Fluid Mech. 88 (1978), 485.

    Article  ADS  MATH  Google Scholar 

  16. Maxworthy, T., The Fluid Dynamics of Insect Flight. Ann. Rev. Fluid Mech., Vol. 13, 1981, 329.

    Article  ADS  Google Scholar 

  17. Strickland, J.H., Webster, B.T., and Nguyen, T., A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study. J. Fluid Eng. 101 (1979), 500.

    Article  Google Scholar 

  18. Landl, R., Theoretical model for vortex-excited oscillations. Intern. Symp. Vibration Problems in Industry. Keswick, England, 1973.

    Google Scholar 

  19. Mehta, U.B., Dynamic Stall of an Oscillating Airfoil. AGARD CP-227, paper no. 23.

    Google Scholar 

  20. Haussling, H.J., Boundary-Fitted Coordinates for Accurate Numerical Solution of Multibody Flow Problems. J. Comp. Phys. 30 (1979), 107.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Sarpkaya, T. and Shoaff, R.L., A Discrete Vortex Analysis of Flow About Stationary and Transversely Oscillating Circular Cylinders. Tech. Rep. No. NPS-69SL79011, Naval Postgraduate School, Monterey, California, 1979.

    Google Scholar 

  22. Maxwell, J.C., On a particular case of the descent of a heavy body in a.resisting medium. Scient. Papers. Cambridge University Press, 1890, 115.

    Google Scholar 

  23. Willmarth, W.W., Hawk, N.E., and Harvey, R.L., Steady and Unsteady Motions and Wakes of Freely Falling Disks. Phys. Fluids 7 (1964), 197.

    Article  ADS  MATH  Google Scholar 

  24. Cohen, C.J., Clare, T.A., and Stevens, F.L., Analysis of the Nonlinear Rolling Motion of Finned Missiles. AIAA J. 12 (1974), 303.

    Article  ADS  Google Scholar 

  25. Sachs, G. and Fohrer, W. Einfluß der aerodynamischen Kopplung auf die Flugzeugdynamik bei schnellen Rollbewegungen. Z. Flugw. Weltraumf. 4 (1980), 379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Lugt, H.J. (1982). Analogies between Oscillation and Rotation of Bodies Induced or Influenced by Vortex Shedding. In: Hornung, H.G., Müller, EA. (eds) Vortex Motion. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-13883-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-13883-9_6

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08536-0

  • Online ISBN: 978-3-663-13883-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics