Skip to main content

Wave Propagation, Instability, and Breakdown of Vortices

  • Chapter
Vortex Motion

Abstract

The themes of wave propagation and hydrodynamic stability have played prominent roles in attempts to understand the phenomenon of vortex breakdown. Recent theoretical and experimental work provide evidence that waves and instabilities are important elements of the vortex breakdown process. Breakdown of vortex cores at high Reynolds numbers may occur in one of two forms, the apparently axisymmetric (“bubble”) or the “spiral” form. The application of soliton theory and hydrodynamic stability theory to both forms is discussed, together with a new large amplitude theory for axisymmetric waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leibovich, S., 1978. The structure of vortex breakdown, Ann. Rev. Fluid Mechanics 10, 221–46.

    Article  ADS  Google Scholar 

  2. Ludwieg, H., 1970. Vortex breakdown, Dtsch. Luft Raumfahrt Rep. 70–40.

    Google Scholar 

  3. Hall, M.G., 1972. Vortex breakdown, Ann. Rev. Fluid Mech. 4, 195–218.

    Article  ADS  Google Scholar 

  4. Kopecky, R.M. and K.E. Torrance, 1973. Initiation and structure of axisymmetric eddies in a rotating stream. Comput. Fluids 1, 289–300.

    Article  MATH  Google Scholar 

  5. Grabowski, W.J. and S.A. Berger, 1976. Solutions of the Navier-Stokes equations for vortex breakdown. J. Fluid Mech. 75, 525–44.

    Article  ADS  MATH  Google Scholar 

  6. Vogel, H.U., 1968. Max-Planck Institut fur Stromungsforschung, Gottingen, Bericht 6.

    Google Scholar 

  7. Ronnenberg, B., 1977. Max-Planck-Institut fur Stromungsforschung, Gottingen, Bericht 20.

    Google Scholar 

  8. Lugt, H.J. and Haussling, H.J., 1982. Axisymmetric vortex breakdown in rotating fluid within a container, to appear in J. Applied Mech.

    Google Scholar 

  9. Faler, J.H. and S. Leibovich, 1977a. Disrupted states of vortex flow and vortex breakdown, Phys. Fluids 20, 1385–1400.

    Article  ADS  Google Scholar 

  10. Faler, J.H. and S. Leibovich, 1977b. An experimental map of the internal structure of a vortex breakdown, J. Fluid Mech. 86, 312–335.

    Google Scholar 

  11. Sarpkaya, T. 1971a. On stationary and travelling vortex breakdowns, J. Fluid Mech. 45, 545–59.

    Article  ADS  Google Scholar 

  12. Escudier, M.P. and Zehnder, N. 1982. Vortex flow regimes, J. Fluid Mech. 115, 105–121.

    Article  ADS  Google Scholar 

  13. Randall, J.D. and S. Leibovich, 1973. The critical state: a trapped wave model of vortex breakdown, J. Fluid Mech. 53, 495–515.

    Article  ADS  Google Scholar 

  14. Howard, L.N. and A.S. Gupta, 1962. On the hydrodynamic and hydromagnetic stability of swirling flows, J. Fluid Mech. 14, 463–76.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Ludwieg, H., 1961. Ergäzung zu der Arbeit: “Stabilität der Stromung in einem zylindrischen Ringraum”, Z. Flugwiss 9, 359–361.

    MathSciNet  MATH  Google Scholar 

  16. Leibovich, S. and K. Stewartson, 1982. A sufficient condition for the instability of inviscid columnar vortices, to be published in J. Fluid Mech.

    Google Scholar 

  17. Garg, A.K. and S. Leibovich, 1979. Spectral characteristics of vortex breakdown flowfields, Phys. Fluids, 22, 2053–64.

    Article  ADS  Google Scholar 

  18. Lessen, J., P.J. Singh and F. Paillet, 1974. The stability of a trailing line vortex, J. Fluid Mech. 63, 753–63.

    Article  ADS  MATH  Google Scholar 

  19. Duck, P.W. and M.R. Foster, 1980. The inviscid stability of a trailing line vortex, Z.A.M.P., 31, 523–30.

    Article  Google Scholar 

  20. Benjamin, T.B., 1962. Theory of the vortex breakdown phenomenon, J. Fluid Mech. 14, 593–629.

    Article  MathSciNet  ADS  Google Scholar 

  21. Leibovich, S., 1979. Waves in parallel or swirling stratified shear flows. J. Fluid Mech. 93, 401–412.

    Article  ADS  MATH  Google Scholar 

  22. Leibovich, S., 1970. Weakly nonlinear waves in rotating fluids. J. Fluid Mech. 42, 803–822.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Leibovich, S. and Randall, J.D., 1972. Solitary waves in concentrated vortices, J. Fluid Mech. 51, 625–635.

    Article  ADS  MATH  Google Scholar 

  24. Hasimoto, H., 1972. A soliton on a vortex filament, J. Fluid Mech. 51, 477–485.

    Article  ADS  MATH  Google Scholar 

  25. Newell, A.C., 1972. The post bifurcation stage of baroclinic instability, J. Atm. Sci., 29, 64–76.

    Article  ADS  Google Scholar 

  26. Huang, J-H., Nonlinear interaction between spiral and axisymmetrical disturbances in vortex breakdown, Ph.D. Thesis, Cornell University, 1974, 140 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Leibovich, S. (1982). Wave Propagation, Instability, and Breakdown of Vortices. In: Hornung, H.G., Müller, EA. (eds) Vortex Motion. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-13883-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-13883-9_4

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08536-0

  • Online ISBN: 978-3-663-13883-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics