Expertiseforschung pp 115-147 | Cite as
Expertise und Instructional Design
- 1 Citations
- 227 Downloads
Zusammenfassung
In diesem Kapitel diskutieren wir die Konsequenzen, die sich aus der aktuellen Expertiseforschung für die Gestaltung von Lernumgebungen, also für das Instructional Design, ergeben. Dazu stellen wir zunächst traditionelle Unterrichtstheorien sowie die Schwierigkeiten, die aufgrund der ihnen inhärenten epistemologischen Annahmen entstehen, im Abriß dar. Möglichkeiten zur Überwindung dieser Schwierigkeiten sind in verschiedenen Strömungen des Konstruktivismus zu sehen, die die Unterrichtsforschung derzeit in neue Bahnen lenken. Wir stellen Vorzüge und Probleme verschiedener konstruktivistisch orientierter Ansätze zur situierten Kognition in bezug auf Instructional Design dar und besprechen einige konkrete, daraus resultierende Unterrichtsmodelle.
Preview
Unable to display preview. Download preview PDF.
Literatur
- Anderson, J. R. (1985). Cognitive psychology and its implications ( 2nd ed. ). New York: Freeman.Google Scholar
- Andrews, D. H. & Goodson, L. A. (1991). A comparative analysis of models of instructional design. In G. J. Anglin (Ed.), Instructional technology: Past, present, and future (pp. 133–155 ). Englewood: Libraries Unlimited.Google Scholar
- Anzai, Y. (1991). Learning and use of representations for physics expertise. In K. A. Ericsson and J. Smith (Eds.), Toward a general theory of expertise. Prospects and limits (pp. 64–92 ). Cambridge: Cambridge University Press.Google Scholar
- Becker, H. (1972). A school is a lousy place to learn anything in. American Behavioral Scientist, 16, 85–105.CrossRefGoogle Scholar
- Bednar, A. K., Cunningham, D., Duffy, T. M. & Perry, J. D. (1991). Theory into practice; How do we link? In G. J. Anglin (Ed.), Instructional technology: Past, present, and future (pp. 88–101 ). Englewood: Libraries Unlimited.Google Scholar
- Bereiter, C. (1990). Aspects of an educational learning theory. Review of Educational Research, 60 (4), 603–624.CrossRefGoogle Scholar
- Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M. & Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26, 369–398.Google Scholar
- Bonner, J. (1988). Implications of cognitive theory for instructional design: Revisited. Educational Communication and Technology, 36 (1), 3–14.Google Scholar
- Bransford, J. D., Goldman, S. R. & Vye, N. J. (1991). Making a difference in people’s abilities to think: Reflections on a decade of work and some hopes for the future. In L. Okagaki and R. J. Sternberg (Eds.), Directors of development: Influences on the development of children’s thinking (pp. 147–180 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Brown, J. S., Collins, A. & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18 (1), 32–42.CrossRefGoogle Scholar
- Bullock, D. H. (1982). Behaviorism and NSPI: The erractically applied discipline. Performance and Instruction, 21 (3), 4–8, 11.Google Scholar
- Carroll, J. M. (1990). The Nurnberg funnel: Designing minimalist instruction for practical computer skill. Cambridge, MA: MIT Press.Google Scholar
- Case, R. & Bereiter, C. (1984). From behaviourism to cognitive behaviourism to cognitive development: Steps in the evolution of instructional design. Instructional Science, 13, 141–158.CrossRefGoogle Scholar
- Chase, W. G. & Simon, H. A. (1973). The mind’s eye in chess. In W. G. Chase (Ed.), Visual information processing (pp. 215–281 ). New York: Academic Press.Google Scholar
- Chi, M. T. H., Glaser, R. & Farr, M. J. (Eds.). (1988). The nature of expertise. Hillsdale, NJ: Erlbaum.Google Scholar
- Chomsky, A. N. (1973). For reasons of state. New York: Pantheon.Google Scholar
- Clancey, W. J. (1987). Knowledge-based tutoring: The GUIDON program. Cambridge, MA: MIT Press.Google Scholar
- Clancey, W. J. (1988). Acquiring, representing, and evaluating a competence model of diagnostic strategy. In M. T. H. Chi, R. Glaser and M. J. Farr (Eds.), The nature of expertise (pp. 343–418 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Clancey, W. J. (1991). The frame of reference problem in the design of intelligent machines. In K. VanLehn (Ed.), Architectures for intelligence (pp. 357–423 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Clancey, W. J. (1992). Representations of knowing: In defense of cognitive apprenticeship. Journal of Artificial Intelligence, 3, 139–168.Google Scholar
- Clancey, W. J. (1993). Situated action: A neuropsychological interpretation response to Vera and Simon. Cognitive Science, 17, 87–116.CrossRefGoogle Scholar
- Clancey, W. J. & Joerger, K. (1990). A practical authoring shell for apprenticeship learning. In M. Gardner, J. G. Greeno, F. Reif, A. H. Schoenfeld, A. diSessa and E. Stage (Eds.), Toward a scientific practice of science education (pp. 141–161 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Clark, R. E. (1989). Current progress and future directions for research in instructional technology. Educational Technology Research and Development, 37, 57–66.CrossRefGoogle Scholar
- Clark, R. E. (1992). Media use in education. In M. C. Alkin (Ed.), Encyclopedia of educational research (Vol. 1, pp. 805–814 ). New York: Macmillan.Google Scholar
- Cognition and Technology Group at Vanderbilt (1991). Technology and the design of generative learning environments. Educational Technology, 31 (5), 34–40.Google Scholar
- Cognition and Technology Group at Vanderbilt (1992). The Jasper series as an example of anchored instruction: Theory, program, description, and assessment data. Educational Psychologist, 27, 291–315.Google Scholar
- Cognition and Technology Group at Vanderbilt (1993). Anchored instruction and situated cognition revisited. Educational Technology, 33 (3), 52–70.Google Scholar
- Collins, A. (1990). Reformulating testing to measure learning and thinking. In N. Frederiksen, R. Glaser, A. Lesgold and M. G. Shafto (Eds.), Diagnostic monitoring of skill and knowledge acquisition (pp. 75–87 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Collins, A. (1991). Cognitive apprenticeship and instructional technology. In L. Idol and B. F. Jones (Eds.), Educational values and cognitive instruction: Implications for reform (pp. 121–138 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Collins, A. (in press). Design issues for learning environments. In S. Vosniadou, E. de Corte, R. Glaser and H. Mandl (Eds.), Technology-supported learning environments: International perspectives Hillsdale, NJ: Erlbaum.Google Scholar
- Collins, A., Brown, J. S. & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honour of Robert Glaser (pp. 453–494 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Collins, A. & Stevens, A. L. (1983). A cognitive theory of inquiry teaching. In C. M. Reigeluth (Ed.), Instructional design theories and models: An overview (pp. 247–278 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Cooke, N. J. (1992). Modeling human expertise in expert systems. In R. R. Hoffman (Ed.), The psychology of expertise: Cognitive research and empirical AI (pp. 29–60 ). New York: Springer.CrossRefGoogle Scholar
- Cooper, P. A. (1993). Paradigm shifts in designed instruction: From behaviorism to cognitivism to constructivism. Educational Technology, 33 (5), 12–19.Google Scholar
- De Groot, A. D. (1965). Thought and choice and chess. The Hague: Mouton.Google Scholar
- Dewey, J. (1916). Democracy and education. New York: Macmillan.Google Scholar
- Dick, W. (1991). An instructional designer’s view of constructivism. Educational Technology, 31 (5), 41–44.Google Scholar
- Di Vesta, F. J. & Richer, L. P. (1987). Characteristics of cognitive engineering: The next generation of instructional systems. Educational Technology Research and Development, 35, 213–230.Google Scholar
- Dreyfus, H. L. & Dreyfus, S. E. (1988). Making a mind versus modeling the brain: Artificial intelligence hack at a branchpoint. In S. R. Graubard (Ed.), The artificial intelligence debate: False starts, real foundations (pp. 15–43 ). Cambridge, MA: MIT Press.Google Scholar
- Duffy, T. M. & Knuth, R. A. (1990). Hypermedia and instruction: Where is the match`? In D. H. Jonassen and H. Mandl (Eds.), Designing hypermedia for learning (pp. 199–225 ). Berlin: Springer.CrossRefGoogle Scholar
- Ericsson, K. A. & Charness, N. (1994). Expert performance: Its structure and acquisition. American Psychologist, 49, 725–747.CrossRefGoogle Scholar
- Ericsson, K. A. & Smith, J. (Eds.). (1991). Toward a general theory of expertise. Prospects and limits. Cambridge: Cambridge University Press.Google Scholar
- Fenstermacher, G. D. & Richardson, V. (1994). Promoting confusion in educational psychology: How is it done? Educational Psychologist, 29 (I), 49–55.CrossRefGoogle Scholar
- Fosnot, C. T. (1984). Media and technology in education: A constructivist view. Educational Communication and Technology, 32, 195–205.Google Scholar
- Gabrys, G., Weiner, A. & Lesgold, A. (1993). Learning by problem solving in a coached apprenticeship system. In M. Rabinowitz (Ed.), Cognitive science foundations of instruction (pp. 119–147 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Gagné, R. M. (Ed.). (1987). Instructional technology: Foundations. Hillsdale, NJ: Erlbaum.Google Scholar
- Gagné, R. M. & Dick, W. (1983). Instructional psychology. Annual Review of Psychology, 34, 261–295.CrossRefGoogle Scholar
- Gerstenmaier, J. & Mandl, H. (1994). Wissenserwerb unter konstruktivistischer Perspektive (Forschungsbericht Nr. 33 ). München: Ludwig-Maximilians-Universität, Lehrstuhl für Empirische Pädagogik and Pädagogische Psychologie.Google Scholar
- Gibson, J. J. (1986). The theory of affordances. In J. J. Gibson (Ed.), The ecological approach to visual perception (pp. 127–143 ). Hillsdale, NJ: Erlbaum. (Original erschienen 1979 )Google Scholar
- Glaser, R. (1990). The reemergence of learning theory within instructional research. American Psychologist, 45 (I), 29–39.CrossRefGoogle Scholar
- Glaser, R. & Bassok, M. (1989). Learning theory and the study of instruction. Annual Review of Psychology, 40, 631–666.CrossRefGoogle Scholar
- Glasersfeld, E. A. von (1977). Radical constructivist view of knowledge. Symposium on constructivism and cognitive development conducted at the Annual Meeting of the AERA, New York.Google Scholar
- Gräsel, C. & Mandl, H. (1993). Förderung des Erwerbs diagnostischer Strategien in fallbasierten Lernumgebungen. Unterrichtswissenschaft, 21, 355–370.Google Scholar
- Greeno, J. G. (1989). Situations, mental models and generative knowledge. In D. Klahr and K. Kotovsky (Eds.), Complex information processing: The impact of Herbert A. Simon (pp. 285–318 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Greeno, J. G. (1991). Mathematical cognition: Accomplishments and challenges in research. In R. R. Hoffman and D. S. Palermo (Eds.), Cognition and the symbolic processes: Applied and ecological perspectives (pp. 255–279 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Gruber, H., Law, L.-C., Mandl, H. & Renkl, A. (in press). Situated learning and transfer. In P. Reimann and H. Spada (Eds.), Learning in humans and machines: Towards an interdisciplinary learning science Oxford: Elsevier.Google Scholar
- Harel, I. & Papert, S. (1992). Software design as a learning environment. In I. Harel and S. Papert (Eds.), Constructionism (pp. 41–84 ). Norwood, NJ: Ablex.Google Scholar
- Heinrich, R. (1984). The proper study of educational technology. Educational Communication and Technology Journal, 32, 67–87.Google Scholar
- Hoffman, R. R. (Ed.). (1992). The psychology of expertise: Cognitive research and empirical Al. New York: Springer.Google Scholar
- Honebein, P. C., Duffy, T. M. & Fishman, B. J. (1993). Constructivism and the design of learning environments: Context and authentic activities for learning. In T. M. Duffy, J. Lowyck & D. H. Jonassen (Eds.), Designing environments for constructive learning (pp. 87–108 ). Berlin: Springer.CrossRefGoogle Scholar
- Jonassen, D. H. (1990). Thinking technology: Toward a constructivist view of instructional design. Educational Technology, 30 (9), 32–34.Google Scholar
- Jonassen, D. H. (1991). Hypertext as instructional design. Educational Technology Research and Development, 39, 83–92.CrossRefGoogle Scholar
- Jonassen, D. H. (1992). Cognitive flexibility theory and its implications for designing CBI. In S. Dijkstra, H. P. M. Hein and J. J. G. van Merrienboer (Eds.), Instructional models in computer-based learning environments (pp. 385–403 ). Berlin: Springer.Google Scholar
- Jonassen, D. H., Campbell, J. P. & Davidson, M. E. (1994). Learning with media: Restructuring the debate. Educational Technology Research and Development, 42, 31–39.CrossRefGoogle Scholar
- Jonassen, D. H., Mayes, T. & McAleese, R. (1993). A manifesto for a constructivist approach to uses of technology in higher education. In T. M. Duffy. J. Lowyck & D. H. Jonassen (Eds.), Designing environments for constructive learning (pp. 231–247 ). Berlin: Springer.CrossRefGoogle Scholar
- Kommers, P. A. M., Jonassen, D. H. & Mayes, T. (1992). Cognitive tools for learning. Berlin: Springer.CrossRefGoogle Scholar
- Kozma, R. B. (1991). Learning with media. Review of Educational Research, 61, 179–211.CrossRefGoogle Scholar
- Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. Chicago: Chicago University Press.Google Scholar
- Larkin, J. H., McDermott, J., Simon, D. P. & Simon, H. A. (1980). Models of competence in solving physics problems. Cognitive Science, 4, 317–345.CrossRefGoogle Scholar
- Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- Lave, J. (1990a). The culture of acquisition and the practice of understanding. In J. W. Stigler, R. A. Shweder and G. Herdt (Eds.), Cultural psychology: Essays on comparative human development (pp. 309–327 ). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- Lave, J. (1990b). Views of classroom: Implications for math and science learning research. In M. Gardner, J. G. Greeno, F. Reif, A. H. Schoenfeld, A. diSessa and E. Stage (Eds.), Toward a scientific practice of science education (pp. 251–263 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Lave, J. (1991). Situating learning in communities of practice. In L. B. Resnick, J. M. Levine and S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 63–82 ). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
- Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- Law, L.-C. (1994). Transfer of learning: Situated cognition perspectives (Research Report No. 32 ). München: Ludwig-Maximilians-Universität, Lehrstuhl für Empirische Pädagogik und Pädagogische Psychologie.Google Scholar
- Lebow, D. (1993). Constructivist values for instructional systems design: Five principles toward a new mindset. Educational Technology Research and Development, 41, 4–16.CrossRefGoogle Scholar
- Leinhardt, G. (1989). Math lessons: A contrast of novice and expert competence. Journal for Research in Mathematics Education, 20, 52–75.Google Scholar
- Linn, M. C. (1986). Science. In R. F. Dillon and R. J. Sternberg (Eds.), Cognition and instruction (pp. 155–204 ). San Diego, NY: Academic Press.Google Scholar
- Mandl, H., Gruber, H. & Renkl, A. (1993). Misconceptions and knowledge compartmentalization. In G. Strube and F. Wender (Eds.), The cognitive psychology of knowledge (pp. 161–176 ). Amsterdam: Elsevier.CrossRefGoogle Scholar
- Maturana, H. R. & Varela, F. J. (1987). Der Baum der Erkenntnis: Die biologischen Wurzeln des menschlichen Erkennens. Bern: Scherz.Google Scholar
- Merrill, M. D. (1994). The descriptive component display theory. In M. D. Merrill and D. G. Twitchell (Eds.), Instructional design theory (pp. 111–235 ). Englewood Cliffs, NJ: Educational Technology Publications.Google Scholar
- Merrill, M. D., Li, Z. & Jones, M. K. (1990). Second generational instructional design (ID:). Educational Technology, 30 (2), 7–14.Google Scholar
- Norman, D. A. (1993). Cognition in the head and in the world: An introduction to the special issue on situated action. Cognitive Science, 17, 1–6.CrossRefGoogle Scholar
- Palincsar, A. S. (1989). Less charted waters. Educational Researcher, 18 (4), 5–7.Google Scholar
- Papert, S. (1990). Introduction by Seymour Papert. In 1. Haret (Ed.), Constructionist learning (pp. 18 ). Boston: MIT Media Laboratory.Google Scholar
- Patel, V. L. & Groen, G. J. (1991). The general and specific nature of medical expertise: A critical look. In K. A. Ericsson and J. Smith (Eds.), Toward a general theory of expertise. Prospects and limits (pp. 93–125 ). Cambridge: Cambridge University Press.Google Scholar
- Perelman, L. J. (1992). School’s out. Hyperlearning, the new technology, and the end of education. New York: Morrow.Google Scholar
- Perkins, D. N. (1993). Person-plus: A distributed view of thinking and learning. In G. Salomon (Ed.), Distributed cognitions: Psychological and educational considerations (pp. 89–110 ). Cambridge: Cambridge University Press.Google Scholar
- Prawat, R. S. & Floden, R. E. (1994). Philosophical perspectives on constructivist views of learning. Educational Psychologist, 29 (1), 37–48.CrossRefGoogle Scholar
- Reigeluth, C. M. (Ed.). (1983). Instructional design: Theories and models. Hillsdale, NJ: Erlbaum.Google Scholar
- Reigeluth, C. M. (Ed.). (1987). Instructional theory in action. Hillsdale, NJ: Erlbaum.Google Scholar
- Resnick, L. B. (1987). Learning in school and out. Educational Researcher, 16 (9), 13–20.Google Scholar
- Resnick, L. B. (1989). Introduction. In L. B. Resnick (Ed.), Knowing, learning and instruction: Essays in honour of Robert Glaser (pp. 1–24 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Resnick, L. B. (1991). Shared cognition: Thinking as social practice. In L. B. Resnick, J. M. Levine and S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 1–20 ). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
- Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. New York: Oxford University Press.Google Scholar
- Salomon, G. & Perkins, D. N. (1989). Rocky roads to transfer: Rethinking mechanism of a neglected phenomenon. Educational Psychologist, 24, 113–142.CrossRefGoogle Scholar
- Salomon, G., Perkins, D. N. & Globerson, T. (1991). Partners u cognition: Extending human intelligence with intelligent technologies. Educational Researcher, 20 (3), 2–9.CrossRefGoogle Scholar
- Schön, D. A. (1983). The reflective practitioner: How professionals think in action. New York: Basic.Google Scholar
- Schön, D. A. (1987). Educating the reflective practitioner. San Francisco, CA: Jossey Bass.Google Scholar
- Schoenfeld, A. H. & Herrmann, D. (1982). Problem perception and knowledge structures in expert and novice mathematical problem solvers. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8, 484–494.Google Scholar
- Seels, B. (1989). The instructional design movement in educational technology. Educational Technology, 29 (5), 11–15.Google Scholar
- Segal, J. W., Chipman, S. F. & Glaser, R. (Eds.). (1985). Thinking and learning skills. Vol. 1: Relating instruction to research. Hillsdale, NJ: Erlbaum.Google Scholar
- Shrock, S. A. (1991). A brief history of instructional development. In G. J. Anglin (Ed.), Instructional technology: Past, present, and future (pp. 11–19 ). Englewood: Libraries Unlimited.Google Scholar
- Simon, H. A. (1989). Models of thought (Vol. 2). New Haven, CT: Yale University Press.Google Scholar
- Soloway, E., Adelson, B. & Ehrlich, K. (1988). Knowledge and processes in the comprehension of computer programs. In M. T. H. Chi, R. Glaser and M. J. Farr (Eds.), The nature of expertise (pp. 129–152 ). Hillsdale, NJ: Erlbaum.Google Scholar
- Spiro, R. J. (1988). Cognitive flexibility theory: Advanced knowledge acquisition in ill-structured domains (Technical Report No. 441 ). Champaign, IL: Center for the Study of Reading.Google Scholar
- Spiro, R. J., Feltovich, P. J., Jacobson, M. J. & Coulson, R. L. (1991). Cognitive flexibility, constructivism, and hypertext: Random access instruction for advanced knowledge acquisition in ill-structured domains. Educational Technology, 31 (5), 24–33.Google Scholar
- Streibel, M. J. (1989). Instructional plans and situated learning: The challenge of Suchman’s theory of situated action for instructional designers and instructional systems. Proceedings of selected research papers presented at the Annual Meeting of the Association for Educational Communication and Technology ( Dallas, TX, February 1–5 ).Google Scholar
- Suchman, L. (1987). Plans and situated actions: The problem of human-machine communication. Cambridge: Cambridge University Press.Google Scholar
- Suchman, L. (1993). Responses to Vera and Simon’s situated action: A symbolic interpretation. Cognitive Science, 17, 71–75.CrossRefGoogle Scholar
- Tripp, S. D. (1993). Theories, traditions, and situated learning. Educational Technology, 33 (3), 7177.Google Scholar
- Vessey, I. (1988). Expert-novice knowledge organization: An empirical investigation using computer program recall. Behaviour and Information Technology, 7, 153–171.CrossRefGoogle Scholar
- Wineburg, S. S. (1991). Remembrance of theories past. In M. Yazdani and R. W. Lawler (Eds.), Artificial intelligence and education, (Vol. 2, pp. 276–282 ). Norwood, NJ: Ablex.Google Scholar
- Winn, W. (1989). Toward a rationale and theoretical basis for educational technology. Educational Technology Research and Development, 37, 35–46.CrossRefGoogle Scholar
- Winn, W. (1990). Some implications of cognitive theory for instructional design. Instructional Science, 19, 53–69.CrossRefGoogle Scholar
- Winn, W. (1993). A constructivist critique of the assumptions of instructional design. In T. M. Duffy, J. Lowyck & D. H. Jonassen (Eds.), Designing environments for constructive learning (pp. 189–212 ). Berlin: Springer.CrossRefGoogle Scholar
- Winograd, T. & Flores, F. (1986). Understanding computers and cognition: A new foundation for design. Norwood, NJ: Ablex.Google Scholar