Skip to main content

A Collocation Method for a Screen Problem in ℝ3

  • Conference paper
  • 43 Accesses

Part of the book series: Teubner-Texte zur Mathematik ((TTZM,volume 131))

Abstract

Let Ω: = (−1,1) × (−1,1) ⊂ ℝ2. The first kind integral equation on Ω,

$$ Vu\left( x \right): = \frac{1} {{4\pi }}\int\limits_\Omega {u\left( y \right)\frac{{dy}} {{\left| {x - y} \right|}} = f\left( x \right)\quad \left( {x \in \Omega } \right)} $$
(1.1)

gives the solution of the Dirichlet problem for the Laplace equation in ℝ3\Ω̄ with Dirichlet data f given on Ω, (“screen problem”) (see [6], [16]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aubin. Approximation of Elliptic Boundary Value Problems. Wiley-Interscience, New York 1972.

    MATH  Google Scholar 

  2. I. Babuška, K. Aziz. Survey lectures on the mathematical foundation of the finite element method. In A. K. Aziz, editor, The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations, pages 3–359. Academic Press, New York 1972.

    Google Scholar 

  3. M. Costabel, W. McLean. Spline collocation for strongly elliptic equations on the torus. To appear.

    Google Scholar 

  4. M. Costabel, F. Penzel, R. Schneider. Error analysis of a boundary element collocation method for a screen problem in ℝ3. THD-Preprint 1284, Technische Hochschule Darmstadt, February 1990.

    Google Scholar 

  5. L. S. Frank. Spaces of network functions. Math. USSR Sbornik 15 (1971) 183–226.

    Article  Google Scholar 

  6. M. A. Jaswon, G. T. Symm. Integral Equation Methods in Potential Theory and Elastostatics. Academic Press, London 1977.

    MATH  Google Scholar 

  7. J. L. Lions, E. Magenes. Nonhomogeneous Boundary Value Problems and Applications, volume 1. Springer-Verlag, Berlin 1972.

    Book  Google Scholar 

  8. J.-C. Nédélec. Equations integrales associees aux problemes aux limites elliptiques dans des domaines de ℝ3, In R. Dautray, J.-L. Lions, editors, Analyse Mathematique et Calcul Numerique pour les Sciences et les Techniques, chapters XI–XIII. Masson, Paris 1988.

    Google Scholar 

  9. S. Prössdorf. Numerische Behandlung singulärer Integralgleichungen. Z. angew. Math. Mech. 69 (1989) T5–T13.

    MATH  Google Scholar 

  10. S. Prössdorf, A. Rathsfeld. A spline collocation method for singular integral equations with piecewise continuous coefficients. Integral Equations Oper. Theory 7 (1984) 536–560.

    Article  MATH  Google Scholar 

  11. G. Schmidt. Spline collocation for singular integro-differential equations over (0,1). Numer. Math. 50 (1987) 337–352.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Schmidt, H. Strese. The convergence of a direct BEM for the plane mixed boundary value problem of the Laplacian. Numer. Math. 54 (1988) 145–165.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Schumaker. Spline Functions: Basic Theory. Wiley, New York 1981.

    MATH  Google Scholar 

  14. E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, N. J. 1970.

    MATH  Google Scholar 

  15. E. P. Stephan. Differenzenapproximationen von Pseudo-Differentialoperatoren. Thesis, Technische Hochschule Darmstadt 1975.

    Google Scholar 

  16. E. P. Stephan. Boundary integral equations for screen problems in ∝3. Integral Equations Oper. Theory 10 (1987) 236–257.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Fachmedien Wiesbaden

About this paper

Cite this paper

Costabel, M., Penzel, F., Schneider, R. (1992). A Collocation Method for a Screen Problem in ℝ3 . In: Schulze, BW., Triebel, H. (eds) Symposium “Analysis on Manifolds with Singularities”, Breitenbrunn 1990. Teubner-Texte zur Mathematik, vol 131. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-11577-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-11577-9_4

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-11578-6

  • Online ISBN: 978-3-663-11577-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics