Skip to main content
  • 125 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

9.1 Allgemeine Literatur und Literatur zu Kapitel 1

  1. Edward S. Yang: “Fundamentals of Semiconductor Devices”, Mc Graw-Hill, 1978

    Google Scholar 

  2. Harold J. Hovel: “Semiconductors and Semimetals; Volume 11: Solar Cells”, Academic Press, 1975

    Google Scholar 

  3. Richard C. Neville: “Solar Energy Conversion: The Solar Cell”; Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1978.

    Google Scholar 

  4. Charles E. Backus: “Solar Cells”, IEEE Press, 1976

    Google Scholar 

  5. Alan L. Fahrenbruch, Richard H. Bube: “Fundamentals of Solar Cells, Photovoltaic Solar Energy Conversion”, Academic Press, 1983

    Google Scholar 

  6. Koltun: “Solar Cells, Their Optics and Metrology”, Allerton Press, Inc./New York, 1988

    Google Scholar 

  7. John P. Mc Kelvey: “Solid State and Semiconductor Physics”, Harper & Row, New York, London, 1966

    Google Scholar 

  8. Rauschenbach: “Solar Cell Array Design Handbook”, Van Nostrand Reinhold Company, 1980, ISBN: 0–442–26842–4

    Google Scholar 

  9. Selders, D. Bonnet: “Solarzellen”; Physik in unserer Zeit/10. Jahrgang 1979/Nr. 1; Verlag Chemie GmbH, Weinheim, 1979

    Google Scholar 

  10. M. Wolf: “Historical Development of Solar Cells”, Proc. 25th Power Sources Symposium, May 23–25, 1972 (reprinted in Lit. 1. 4)

    Google Scholar 

  11. M.A. Green: “Photovoltaics: Coming of Age”; Proceedings 21st IEEE Photovoltaic Specialists Conference, May 21–25, 1990, 90CH2838–1, ISSN: 0160–8371/90/00000001

    Google Scholar 

  12. B. Lange: “Eine neue photovoltaische Zelle”, Zeitschrift für Physik, Vol. 31, S. 139, Februar 1930

    Google Scholar 

  13. P. Rappaport: “The Electron-Voltaic Effect in p-n-Junctions induced by Beta-Particle Bombardment”, Phys. Rev., Vol. 93, p. 93, Jan. 1954

    Article  Google Scholar 

  14. M.B. Prince: “Silicon Solar Energy Converters”, Journal of Applied Physics, Vol. 26, p. 534–540, May 1955

    Article  Google Scholar 

  15. J.J. Loferski: “Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion”; Journal Appl. Phys., Vol. 27, p.777, July, 1956

    Article  Google Scholar 

9.2 Literatur zu Kapitel 2

  1. W. Shockley, W.T. Reed: Phys. Rev. 87, 835 (1952)

    Article  MATH  Google Scholar 

  2. R. Gremmelmaier: Proc. Inst. Radio Engrs., 46, 1045 (1958)

    Google Scholar 

  3. W. Luft: IEEE Trans. Aerospace Electron. Systems AES-6, 797 (1970)

    Google Scholar 

  4. Joseph J. Loferski: “Principles of photovoltaic Energy Conversion”, 25th Annual Proceedings Power Sources Conference, May, 1972

    Google Scholar 

9.3 Literatur zu Kapitel

  1. M.P. Thekaekara: “Solar Energy Outside the Earth’s Atmosphere”; Solar Energy, Vol. 14, pp. 109–127, Pergamon Press, 1973.

    Google Scholar 

  2. K. Bogus: “Solar Constant, AMO Spectral Irradiance and Solar Cell Calibration”; Technical Memorandum TM-160 of the European Space Agency ESA, June 1975.

    Google Scholar 

  3. E.A. Makarova, A.V. Kharitonov: “Distribution of Energy in the Solar Spectrum and the Solar Constant”, NASA-TT-F-803, Juni 1974 (Englische Übersetzung von “Raspredeleniye energii v spektre Solntsa i solnechnaya postoyannaya”, Nauka, Moskau, 1972)

    Google Scholar 

  4. R. Hulstrom, R. Bird, C. Riordan: “Spectral Solar Irradiance Data Sets for Selected Terrestrial Conditions”, Elsevier Sequoia 0379–6787/85, Aug. 2, 1985

    Google Scholar 

  5. E.G. Suppa: “Space Calibration of Solar Cells. Results of 2 Shuttle Flight Missions”, Proceedings 17th IEEE Photovoltaic Specialists Conference, Kissimmee, Florida, May. 1–4, 1984.

    Google Scholar 

  6. Robert K. Yasui, Richard F. Greenwood: “Results of the 1973 NASA/JPL Balloon Flight Solar Cell Standardization Program”, 9th IECEC, San Francisco, CA, August 26–30, 1974

    Google Scholar 

  7. M. Roussel, A. Laporte: “Calibration of Solar Cells outside the Atmosphere”, Proceedings of the 4th European Symposium Photovoltaic Generators in Space“, Cannes, Sept. 18–20, 1984, ESA SP-210, Nov. 1984

    Google Scholar 

  8. R.J. Handy: “Theor. Analysis of the Series Resistance of a Solar Cell”, Solid State Electronics, Pergamon Press, Vol. 10, pp. 765–775, 1967.

    Article  Google Scholar 

  9. Chr. Oxynos Lauschke:“ Die Dunkelstrommethode als Mittel zur Messung der IV-Charakteristik von Solarzellengeneratoren”; MBB Technische Niederschrift RE 423–1/74, Ottobmnn, 1974

    Google Scholar 

  10. Martin Wolf, Hans Rauschenbach: “Series Resistance Effects on Solar Cell Measurements”; Advanced Energy Conversion, Vol. 3, 1963

    Google Scholar 

  11. J.J. Wysocki, P. Rappaport: “Effect of Temperature on Photovoltaic Energy Conversion”; Journal of Applied Physics, Vol. 31, pp. 571–578, 1960

    Article  Google Scholar 

  12. Martin Wolf: “Limitations and Possibilities for Improvement of Photovoltaic Solar Energy Converters”, Proceedings IRE, Vol. 48, pp. 1246–1263, July 1960.

    Article  Google Scholar 

  13. Martin Wolf: “A New Look at Silicon Solar Cell Performance”; Proceedings 8th IEEE Photovoltaic Specialists Conference, Seattle, Washington, Aug. 4–6, 1970, Catalog Nr. 70C 32 ED

    Google Scholar 

  14. C. Misiano, C. Greco: “TiO2 Antireflection Coating for Si Solar Cells”, Proceedings of the International Colloquium “SOLAR CELLS” organized by the European Cooperation Space Environment Committee, July 6 to 10, 1970, Toulouse, France

    Google Scholar 

  15. M.A. Greene, A.W. Blakers, Shi Jiqun, E.M. Keller, S.R. Wenham, R.B. Godfrey, T. Szpitalak, M.R. Willison: “Towards a 20% efficient Silicon Solar Cell”, Proceedings 17th IEEE Photovoltaic Specialists Conference, May 1–4, 1984, 84CH2019–8

    Google Scholar 

  16. J. Haynos, J.F. Allison, R. Arndt, A. Meulenberg Jr.:“The Comsat Non Reflecting Silicon Solar Cell: A Second Generation Improved Cell”, Proceedings of the International Conference on Photovoltaic Power Generation, Hamburg, Sept. 1974.

    Google Scholar 

  17. D.L. Kendall:“On Etching very narrow Grooves in Silicon”, Appl. Phys. Letters, 26, 4, 195, Feb. 1975.

    Article  Google Scholar 

  18. A.L. Scheinine, J.H. Wohlegmuth, E. Sparks:“Silicon Solar Cell Optimization”, Technical Report AFWAL-TR-81–2052, June 1981

    Google Scholar 

  19. J. Lindmayer, J.F. Allison:“The Violet Cell: An Improved Silicon Solar Cell”, Proceedings of the 9th IEEE Photovoltaic Specialists Conference, Silver Springs, Md., May 2–4, 1972

    Google Scholar 

  20. M.A. Green, S.R. Wenham, A.W. Blakers: “Recent Advances in high Efficiency Silicon Solar Cells”, Proceedings 19th IEEE Photovoltaic Specialists Conference, May 4–8, 1987, ISSN: 0160–8371/87/0000–0006

    Google Scholar 

  21. P. Verlinden, F. Van de Wide, G. Stehelin, F. Floret, J.P. David: “High Efficiency Interdigitated Back Contact Silicon Soalr Cells”, Proceedings 19th IEEE Photovoltaic Specialists Conference, May 4–8, 1987, ISSN: 0160–8371/87/0000–0405

    Google Scholar 

  22. P.A. Iles, K.I. Chang, D. Leung, Y.C.M. Yeh:“The Role of the A1GaAs Window Layer in GaAs Heteroface Solar Cells”, Proceedings 18th IEEE Photovoltaic Specialists Conference, Oct. 21–25, 1985, ISSN: 0160–8371/87/0000–0304

    Google Scholar 

  23. K.A. Bertncss, M. Ladle Ristow, H.C. Hamaker: “High Efficiency GaAs Solar Cells from a Multiwafer OMVPE Reactor”; Proceedings 20th IEEE Photovoltaic Specialists Conference, Sept. 26–30, 1988, 88CH2527–0, ISSN: 0160–8371/88/0000–0769

    Google Scholar 

  24. R.P. King, R.A. Sinton, R.M. Swanson (Stanford University):“Front and Back Surface Fields for Point-Contact Solar Cells”, Proceedings 20th IEEE Photovoltaic Specialists Conference, Sept. 26–30, 1988, 88CH2527–0, ISSN: 0160–8371/88/00000538

    Google Scholar 

  25. R.F. Wood, R.D. Westbrook, G.E. Jellison: “High-Efficiency intrinsically and extrinsically passivated Laser-processed Silicon Solar Cells”, Proceedings 19th IEEE Photovoltaic Specialists Conference, May 4–8, 1987, ISSN: 0160–8371/87/00000519

    Google Scholar 

  26. T. Saitoh, T. Uematsu, Y. Kida, K. Matsukuma, K. Morita: “Design and Fabrication of 20%-Efficiency, medium Resistivity Silicon Solar Cells”, Proceedings 19th IEEE Photovoltaic Specialists Conference, May 4–8, 1987, ISSN: 0160–8371/87/00001518

    Google Scholar 

  27. D.L. Meier, J.A. Spitznagel, J. Greggi, R.B. Campbell (Westinghouse):“AntimonyDoped Dendritic WEB Silicon Solar Cells”, Proceedings 20th IEEE Photovoltaic Specialists Conference, Sept. 26–30, 1988, 88CH2527–0, ISSN: 0160–8371/88/00000415

    Google Scholar 

  28. M.A. Green, C.M. Chong, F. Zhang, A. Sproul, J. Zolper, S.R. Wenham (Univ. of New South Wales, Australia):“20% Efficient Laser Grooved, Buried Contact Silicon Solar Cells”, Proceedings 20th IEEE Photovoltaic Specialists Conference, Sept. 2630, 1988, 88CH2527–0, ISSN: 0160–8371/88/0000–0411

    Google Scholar 

  29. D.B. Bickler, W.T. Callaghan: “The economic Payoff for a State-of-the-Art High-Efficiency Flat-Plate crystalline Silicon Solar Cell Technology”, Proceedings 19th IEEE Photovoltaic Specialists Conference, May 4–8, 1987, ISSN: 01608371/87/0000–1424

    Google Scholar 

  30. K. Jäger, R. Hezel: “Bifacial MIS Inversion Layer Solar Cells based on Low Temperature Silicon Surface Passivation”, Proceedings 19th IEEE Photovoltaic Specialists Conference, May 4–8, 1987, ISSN: 0160–8371/87/0000–0388

    Google Scholar 

  31. S. Mottet: “Solar Cells Modelisation for Generator Computer Aided Design and Irradiation Degradation”, Proceedings of the 2nd European Symposium ‘photovoltaic Generators in Spac’“, Heidelberg, 15–17. April 1980 (ESA SP-147, June 1980)

    Google Scholar 

  32. A. Cuevas, M. Balbuena (Univ. Politecnica Madrid):“Thick-Emitter Silicon Solar Cells”, Proceedings 20th IEEE Photovoltaic Specialists Conference, Sept. 26–30, 1988, 88CH2527–0, ISSN: 0160–8371/88/0000–0429

    Google Scholar 

  33. D.E. Arvizu (SANDIA Nat. Labs):“Crystalline Silicone Photovoltaic Cell Technology: Meeting the Challenge for Utility Power”, Proceedings 20th IEEE Photovoltaic Specialists Conference, Sept. 26–30, 1988, 88CH2527–0, ISSN: 01608371/88/0000–0397

    Google Scholar 

  34. S.P. Tobin, C. Bajgar, S.M. Vernon, L.M. Geoffroy, C.J. Keavney, M.M. Sanfacon, V.E. Haven, M.B. Spizer, K.A. Emery: “A 23.7% efficient one-Sun GaAs Solar Cell”, Proceedings 19th IEEE Photovoltaic Specialists Conference, May 4–8, 1987, ISSN: 0160–8371/87/0000–1492

    Google Scholar 

  35. D.L. King, D.E. Arvizu: “Crystalline Cell Research: Today and Tomorrow”, Proceedings 19th IEEE Photovoltaic Specialists Conference, May 4–8, 1987, ISSN: 0160–8371/87/0000–0043

    Google Scholar 

  36. G.F. Virshup, B-C. Chung, J.G. Werthen (Varian): “23.9% monolithic Multijunction Solar Cell”, Proceedings 20th IEEE Photovoltaic Specialists Conference, Sept. 2630, 1988, 88CH2527–0, ISSN: 0160–8371/88/0000–0441

    Google Scholar 

  37. L.D. Partain, M.S. Kuryla, R.E. Weiss, J.G. Werthen, G.F. Virshup, H.F. Mac Milian, H.C. Hamaker, D.L. King: “26.1% Solar Cell Efficiency for GaAs mechanically stacked on Ge”, Proceedings 19th IEEE Photovoltaic Specialists Conference, May 4–8, 1987, ISSN: 0160–8371/87/0000–1504

    Google Scholar 

  38. S.P. Tobin, S.M. Vernon, C. Bajgar, V.E. Haven, L.M. Geoffroy, D.R. Lillington, R.E. Hart, K.A. Emery, R.J. Matson: “High Efficiency GaAs/Ge Monolithic Tandem Solar Cells”, Proceedings 20th IEEE Photovoltaic Specialists Conference, Sept. 26–30, 1988, 88CH2527–0, ISSN: 0160–8371/88/0000–0405

    Google Scholar 

  39. L. Bertotti, C. Flores, F. Paletta, M. Martella: “Large Area GaAs/Si mechanically stacked Multijunction Solar Cells optimized for Space Application”, Proceedings 19th IEEE Photovoltaic Specialists Conference, May 4–8, 1987, ISSN: 01608371/87/0000–1512

    Google Scholar 

  40. R.P. Gale, R.W. Mc Clelland, B.D. King, J.V. Gormley (Kopin Corp.):“High Efficiency Thin-Film AIGaAs-GaAs Double Hetrostructure Solar Cells”, Proceedings 20th IEEE Photovoltaic Specialists Conference, Sept. 26–30, 1988, 88CH2527–0, ISSN: 0160–8371/88/0000–0446

    Google Scholar 

  41. H. Okamoto, Y. Kadota, Y. Watanabe, Y. Fukuda, T. Oh’hara, Y. Ohmachi (NTT, Japan):“High Efficiency GaAs Solar Cells Fabricated on Si Substrates”, Proceedings 20th IEEE Photovoltaic Specialists Conference, Sept. 26–30, 1988, 88CH2527–0, ISSN: 0160–8371/88/0000–0475

    Google Scholar 

  42. H.F. Mac Millan, H.C. Hamaker, G.E. Virshup, J.G. Werthen (Varian):“Multijunction III-V Solar Cells: Recent and Projected Results”, Proceedings 20th IEEE Photovoltaic Specialists Conference, Sept. 26–30, 1988, 88CH2527–0, ISSN: 0160–8371/88/0000–0048

    Google Scholar 

  43. ASEC:“DASA Tempo Solar Cell”, Design Review, Ottobrunn, March 3rd, 1994

    Google Scholar 

  44. P.K. Chiang, D.D. Knit, B.T. Cavicchi, K.A. Bertness, S.R. Kurtz, J.M. Olson: “Large Area GaInP2/GaAs/Ge Multijunction Solar Cells for Space Applications”, Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, December 5–9, 1994, Waikoloa, Hawaii, USA.

    Google Scholar 

  45. F.F. Ho, M.Y. Yeh: “High Efficiency Solar Cell”; International Patent Publication Number WO 95/13626, 18. 5. 95

    Google Scholar 

  46. S.P. Tobin:“Progress in GaAs Solar Cell Research”, Proceedings of the 4th International Photovoltaic Science and Engineering Conference, Sydney, NSW Australia, 14–17 February, 1989

    Google Scholar 

  47. C. Frölich and C. Wehrli: „Reference extraterrestrial spectral Irradiance Distribution“, Veröffentlichung des World Radiation Centers, Davos, Schweiz.

    Google Scholar 

9.4 Literatur zu Kapitel 4

  1. J. Knobloch, A. Aberle, B. Voss: “Cost Effective Processes for Silicon Solar Cells with High Performance”, Proceedings 9th Photovoltaic Solar Energy Conference, Freiburg, 25. - 29. 9. 1989, Kluwer Academic Publishers

    Google Scholar 

  2. J.H. Wohlgemuth, S. Narayanan, R. Brenneman: “Cost Effectiveness of High Efficiency Cell Processes as applied to Cast Polycrystalline Silicon”; Proceedings 21st IEEE Photovoltaic Specialists Conference, May 21–25, 1990, 90CH2838–1, ISSN: 0160–8371/90/0000–0221

    Google Scholar 

  3. H. Fischer, R. Gereth: “New Aspects for the Choice of Contact Materials for Silicon Solar Cells”, 7th IEEE Photovoltaic Specialists Conference, Pasadena, CA, 1968, p. 70

    Google Scholar 

  4. Fahrenbruch, Richard H. Bube:“Fundamentals of Solar Cells”, Academie Ruens, 1983, p. 190

    Google Scholar 

  5. W.H. Becker, S.R. Pollack:“The Formation and Degradation of Ti-Ag and Ti-Pd-Ag Solar Cell Contacts”, NASA Contract SG-316, 1972

    Google Scholar 

  6. D.Z. Hamilton, W.G. Howard:“Basic Integrated Circuit Engineering”, Mc Graw Hill, N.Y., 1975

    Google Scholar 

  7. P.G. Shewman:“Diffusion in Solids”, Mc Graw Hill, N.Y. 1963.

    Google Scholar 

  8. H.E. Bates, D.N. Jewett, V.E. White:“Growth of Silicon Ribbon by Edge-defined, Film-fed Growth”, Proceedings of the 10th IEEE Photovoltaic Specialists Conference, Nov 13–15, 1973

    Google Scholar 

  9. S.T. Picraux, P.S. Peercy:“Ionen-Implantation in Oberflächen”, Spektrum der Wissenschaft, Mai 1985.

    Google Scholar 

  10. Gerald B. Stringfellow:“Organometallic Vapor-Phase Epitaxy: Theory and Proctice”, Academic Press Inc., 1989.

    Google Scholar 

  11. Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Band 15, S. 138

    Google Scholar 

  12. U. Möller, “Untersuchungen zum Bridgman-Verfahren am System Ge:Ga”, DLR Forschungsbericht DLR-FB 91–16, ISSN 0939–2963

    Google Scholar 

  13. L. Dorn, K. Lindner, “Widerstands-, Strom-, Spannungs-und Leistungsabmessung als Mittel zur Gütesicherung”, Sonderdruck 12/73 der Messer Griesheim GmbH, Frankfurt/M.

    Google Scholar 

  14. F.M. Smits, “Formation of Junction Structures by Solid-State Diffusion”, Proceedings of the IRE, June 1958, pp. 1049–1061

    Google Scholar 

9.5 Literatur zu Kapitel 5

  1. Dr. E. Müller: “Optimale Auslegung von Solarzellenanlagen (Matching)”, MBB-TN W432–18/67, Ottobrunn, 17. 11. 1967

    Google Scholar 

  2. “Gefahr durch den Zweiten Durchbruch”, Markt und Technik Nr. 9 vom 27.2.1981

    Google Scholar 

  3. E.L. Ralph, J. Roger:“Silicon Solar Cell Interconnectors for Low Temperature Applications”, Colloque Internationale sur les Cellules Solaires, Toulouse, Juli 1970

    Google Scholar 

  4. H.W. Boller, J. Koch:“Accelerated Fatigue Tests of Solar Cell Interconnectors for Simulation of Thermal Cycles”, Proceedings 10th IEEE Photovoltaic Specialists Conference, May, 1975

    Google Scholar 

9.6 Literatur zu Kapitel 6

  1. H.Y. Tada, J.R. Carter, B.E. Anspaugh, R.G. Downing:“Solar Cell Radiation Handbook”, Third Edition, November 1, 1982, JPL Publication 82–69 (NASA-CE169662)

    Google Scholar 

  2. J.G. Roederer:“Dynamic of Geomagnetically Trapped Radiation”, Springer Verlag 1970.

    Google Scholar 

  3. Edward W. Hones jr.:“Der Schweif der Erdmagnetosphare”, Spektrum der Wissenschaften, Mai 1986.

    Google Scholar 

  4. M.J. Teague, J. Stein, J.I. Vette:“The Use of the Inner Zone Electron Model AE-5 and Associated Computer Programs”, NSSDC 72–11, November 1972.

    Google Scholar 

  5. M.J. Teague, K.W. Chan, J.I. Vette:“AE6: A Model Environment of Trapped Electrons for Solar Maximum”, NASA-TM-X-72597, 1976.

    Google Scholar 

  6. J.I. Vette:“The AE-8 Trapped Electron Model Environment”, NSSDC/WDC-AR&S 91–24, Nov. 91

    Google Scholar 

  7. D.M. Sawyer, J.I. Vette:“AP-8: Trapped Proton Environment for Solar Maximum and Solar Minimum”, NSSDC/WDC-A-R&S 76–06, 1976.

    Google Scholar 

  8. J.H. King:“Solar Proton Fluences for 1977–1983 Space Missions”, Journal of Spacecraft and Rockets, 11, Nr. 6, 401, June 1974.

    Article  Google Scholar 

  9. E.G. Stassinopoulos:“SOLPRO: A Computer Code to Calculate Probabilistic Energetic Solar Proton Fluences”, NASA, NSSDC 75–11, 1975.

    Google Scholar 

  10. NASA–X–601–84–2

    Google Scholar 

  11. R.G. Downing, J.R. Carter Jr., J.M. Denney:“The Energy Dependence of Electron Damage in Silicon”, Proceedings of the 4th Photovoltaic Specialists Conference, Vol. 1, 1964.

    Google Scholar 

  12. B.E. Anspaugh: “Proton and Electron Damage Coefficients for GaAs/Ge Solar Cells”, Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, Oct. 711, 1991, Las Vegas, Nevada (CH2953–8/91/0000–1593)

    Google Scholar 

  13. A.B. Smith, J.W. Blue: “A Comparison of Solar Cell Damage by Alpha-Particles and Protons”, NASA TN D-3427, Mai 1966.

    Google Scholar 

  14. B.E. Anspaugh:“ Solar Cell Radiation Handbook, Addendum 1: 1982–1988”, JPL Publication 82–69, Addendum 1, February 15, 1989.

    Google Scholar 

  15. B.E. Anspaugh, R.G. Downing:“Radiation Effects in Silicon and Gallium Arsenide Solar Cells Using Isotropic and Normally Incident Radiation”, JPL Publication 8461, September 1, 1984.

    Google Scholar 

  16. C.E. Jordan: “NASA Radiation Models AP-8 and AE-8”, Radex Inc. Three Preston Court, Bedford, MA 01730, USA, Report Nr. GL-TR-89–0267, Sept. 30, 1989.

    Google Scholar 

  17. James I. Vette:“The NASA/National Space Science Data Center Trapped Radiation Environment Model Program (1964–1991)”, NSSDC/WDC-A-R&S 91–29, Nov. 1991.

    Google Scholar 

  18. Tomas Markvart:“Radiation Damage in Solar Cells”, Journal of Materials Science: Materials in Electronics, Vol. 1, 1990

    Google Scholar 

  19. B.E. Anspaugh:“GaAs Solar cell Radiation Handbook”, JPL Publication 96–9, July 1, 1996

    Google Scholar 

  20. C.N. Fellas:“An arc-free thermal blanket foKingr spacecraft use”, IEEE Transactions on Nuclear Science, Vol. NS-27, No. 6, Dec. 1980

    Google Scholar 

  21. A. Bogorad, C. Bowman, R. Herschitz, W. Krummann, W. Hart:“Differential Charging Control on Solar Arrays for Geosynchronous Spacecraft”, IEEE Transactions on Nuclear Science, Vol. 40, No. 6, Dec. 1993

    Google Scholar 

9.7 Literatur zu Kapitel 7

  1. A.Bohrmann. “Bahnen künstlicher Satelliten”, BI Hochschultaschenbücher-Verlag, Mannheim

    Google Scholar 

  2. J.J. Capart:“Electronic Control Circuits for Power Sources”; ESRO Summer School 1968, Lecture Nr. 17, ESTEC, Noordwijk, Holland

    Google Scholar 

  3. Ford Aerospace & Communications Corp., “Power Conditioning of the Intelsat V Solar Array”, Report Nr. WDL-TR7612, Chapter 7. 6.

    Google Scholar 

  4. C.C. Vaz, C.E. Santana, J.Kono, M.C.P. de Almeida, C.F.S. Freire, W. Schultze:“In-Orbit Performance of the SCD-1 Satellite Power Supply Subsystem”, Proceedings of the Fourth European Space Power Conference, 4–8 September 1995, Poitiers, France

    Google Scholar 

  5. B. Anspaugh, “Uncertainties in Predicting Solar Panel Power Output”, NASA-CR138455, April 15, 1974

    Google Scholar 

  6. “Derating Requirements and Application Rules for Electronic Components; ESA PSS-01–301, Issue 1, December 1982; ISSN 0379–4059, ESTEC, Noordwijk, The Netherlands

    Google Scholar 

  7. C. Misiano, C. Greco: “TiO2 Antireflection Coating for Si Solar Cells”, Proceedings of the International Colloquium “SOLAR CELLS” organized by the European Cooperation Space Environment Committee, July 6 to 10, 1970, Toulouse, France

    Google Scholar 

  8. ESA Space Debris Working Group, “Space Debris”, ESA SP-1109, Nov. 1988

    Google Scholar 

  9. H. Kulms “Zerstörungen an Solargeneratoren durch Mikrometeoriten und Space Debris”, TN-KT236–3/89, Daimler-Benz Aerospace (vormals MBB), Ottobrunn, 11. 9. 1989

    Google Scholar 

  10. TU Braunschweig, Institut für Raumflugtechnik und Reaktortechnik, “LVMSStudie; Bahnanalysen und Kollisionsrisiken mit Space Debris” Bericht R9045, Dezember 1990.

    Google Scholar 

9.8 Literatur zu Kapitel 8

  1. R.V. Elms, K. Miyagi, C.A. Winslow: “Space Station Solar Array Design and Development”, I.E.C.E.C. 1988

    Google Scholar 

  2. M.L. Ciancone, S.K. Rutledge: “Mast Material Test Program (MAMA’l’bP)” NASA TM-100821, 1988

    Google Scholar 

  3. A.M.V. Vieleers, P.R. Preiswerk:“Extendible and Retractable Masts for Solar Array Deployments”, Proceedings of the 3rd European Symposium Photovoltaic Generators in Space, Bath, 4–6 May, 1982 (ESA SP-173)

    Google Scholar 

  4. “The Coilable Boom Systems”, AEC-Able Engineering Company Inc., P.O. Box 588, Goleta, CA 93116–0588, USA

    Google Scholar 

  5. “Automatically Deployable Able Booms”, AEC-Able Engineering Company Inc., P.O. Box 588, Goleta, CA 93116–0588, USA

    Google Scholar 

  6. “Solar Arrays for Electrical Power in Space”, Advanced Visual Concepts-SA/10–85, Lockheed Missiles & Space Company, P.O. Box 504, Sunnyvale, CA 94088, USA

    Google Scholar 

  7. G.F. Turner, S.C. DeBrock: “Large Solar Array Design”, Lockheed Missiles & Space Company, P.O. Box 504, Sunnyvale, CA 94088, USA, March 1989

    Google Scholar 

  8. H.M. Newns: “Hubble Space Telescope Solar Array 1, Design Description”, Hubble Space Telescope Solar Array Workshop, ESTEC, Noordwijk, The Netherlands, 3031 May, 1995, ESA WPP-77

    Google Scholar 

  9. L. Gerlach: “HST Solar Array 1, Post-Flight Investigation Programme, ES’IEC, Noordwijk, The Netherlands/Wedel, Germany, June 1992

    Google Scholar 

  10. L. Gerlach, H.M. Newns, C. Paarmann, H. Bebermeier, T. Mende, E. Bongers: “Hubble Space Telescope and Eureca Solar Generators, A Summary of the Post-Flight Investigations”, ESTEC-Noordwijk, NL; Matra Marconi Space-Bristol, GB; DASA-Ottobrunn, D; Fokker Space & Systems-Leiden, NL.

    Google Scholar 

  11. H. Brodersen, D. Pfefferkorn, G. La Roche: “Intelsat VI Solar Array Design and Performance”, 10th AIAA Communication Satellite System Conference, Orlando, Florida, March 18–22, 1984

    Google Scholar 

  12. G. La Roche: “Electrical Design of the Intelsat VI Solar Generator”, Proceedings of the 4th European Symposium ‘Photovoltaic Generators in Space’, Cannes, 18–20 Sept. 1984 (ESA SP-210, Nov. 1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

La Roche, G. (1997). Literatur. In: Mildenberger, O. (eds) Solargeneratoren für die Raumfahrt. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-11383-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-11383-6_9

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-11384-3

  • Online ISBN: 978-3-663-11383-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics