Skip to main content

Solarzellen und Korpuskularstrahlung

  • Chapter
Solargeneratoren für die Raumfahrt
  • 119 Accesses

Zusammenfassung

Der Weltraum ist erfüllt von atomaren Teilchen verschiedener Art und Herkunft. Die Erdoberfläche ist gegen diese Korpuskularstrahlung weitgehend geschützt durch die Atmosphäre und durch das Magnetfeld der Erde. Raumfahrzeuge aber, die die Atmosphäre verlassen und sich auf Umlaufbahnen um die Erde noch im Bereich des Erdmagnetfeldes bewegen, sind ihr voll ausgesetzt. Deshalb sollen in diesem Kapitel die wichtigsten Komponenten der Weltraum-Korpuskularstrahlung quantifiziert und ihre Wechselwirkung mit Solarzellen dargestellt werden. Eine detaillierte Darstellung der Wechselwirkung zwischen Korpuskularstrahlung und Solarzellen findet sich in Lit. 6.1 und Lit. 6.19.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. H.Y. Tada, J.R. Carter, B.E. Anspaugh, R.G. Downing:“Solar Cell Radiation Handbook”, Third Edition, November 1, 1982, JPL Publication 82–69 (NASA-CE169662)

    Google Scholar 

  2. J.G. Roederer:“Dynamic of Geomagnetically Trapped Radiation”, Springer Verlag 1970.

    Google Scholar 

  3. Edward W. Hones jr.:“Der Schweif der Erdmagnetosphare”, Spektrum der Wissenschaften, Mai 1986.

    Google Scholar 

  4. M.J. Teague, J. Stein, J.I. Vette:“The Use of the Inner Zone Electron Model AE-5 and Associated Computer Programs”, NSSDC 72–11, November 1972.

    Google Scholar 

  5. M.J. Teague, K.W. Chan, J.I. Vette:“AE6: A Model Environment of Trapped Electrons for Solar Maximum”, NASA-TM-X-72597, 1976.

    Google Scholar 

  6. J.I. Vette:“The AE-8 Trapped Electron Model Environment”, NSSDC/WDC-AR&S 91–24, Nov. 91

    Google Scholar 

  7. D.M. Sawyer, J.I. Vette:“AP-8: Trapped Proton Environment for Solar Maximum and Solar Minimum”, NSSDC/WDC-A-R&S 76–06, 1976.

    Google Scholar 

  8. J.H. King:“Solar Proton Fluences for 1977–1983 Space Missions”, Journal of Spacecraft and Rockets, 11, Nr. 6, 401, June 1974.

    Article  Google Scholar 

  9. E.G. Stassinopoulos:“SOLPRO: A Computer Code to Calculate Probabilistic Energetic Solar Proton Fluences”, NASA, NSSDC 75–11, 1975.

    Google Scholar 

  10. NASA–X–601–84–2

    Google Scholar 

  11. R.G. Downing, J.R. Carter Jr., J.M. Denney:“The Energy Dependence of Electron Damage in Silicon”, Proceedings of the 4th Photovoltaic Specialists Conference, Vol. 1, 1964.

    Google Scholar 

  12. B.E. Anspaugh: “Proton and Electron Damage Coefficients for GaAs/Ge Solar Cells”, Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, Oct. 711, 1991, Las Vegas, Nevada (CH2953–8/91/0000–1593)

    Google Scholar 

  13. A.B. Smith, J.W. Blue: “A Comparison of Solar Cell Damage by Alpha-Particles and Protons”, NASA TN D-3427, Mai 1966.

    Google Scholar 

  14. B.E. Anspaugh:“ Solar Cell Radiation Handbook, Addendum 1: 1982–1988”, JPL Publication 82–69, Addendum 1, February 15, 1989.

    Google Scholar 

  15. B.E. Anspaugh, R.G. Downing:“Radiation Effects in Silicon and Gallium Arsenide Solar Cells Using Isotropic and Normally Incident Radiation”, JPL Publication 8461, September 1, 1984.

    Google Scholar 

  16. C.E. Jordan: “NASA Radiation Models AP-8 and AE-8”, Radex Inc. Three Preston Court, Bedford, MA 01730, USA, Report Nr. GL-TR-89–0267, Sept. 30, 1989.

    Google Scholar 

  17. James I. Vette:“The NASA/National Space Science Data Center Trapped Radiation Environment Model Program (1964–1991)”, NSSDC/WDC-A-R&S 91–29, Nov. 1991.

    Google Scholar 

  18. Tomas Markvart:“Radiation Damage in Solar Cells”, Journal of Materials Science: Materials in Electronics, Vol. 1, 1990

    Google Scholar 

  19. B.E. Anspaugh:“GaAs Solar cell Radiation Handbook”, JPL Publication 96–9, July 1, 1996

    Google Scholar 

  20. C.N. Fellas:“An arc-free thermal blanket foKingr spacecraft use”, IEEE Transactions on Nuclear Science, Vol. NS-27, No. 6, Dec. 1980

    Google Scholar 

  21. A. Bogorad, C. Bowman, R. Herschitz, W. Krummann, W. Hart:“Differential Charging Control on Solar Arrays for Geosynchronous Spacecraft”, IEEE Transactions on Nuclear Science, Vol. 40, No. 6, Dec. 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

La Roche, G. (1997). Solarzellen und Korpuskularstrahlung. In: Mildenberger, O. (eds) Solargeneratoren für die Raumfahrt. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-11383-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-11383-6_6

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-11384-3

  • Online ISBN: 978-3-663-11383-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics