Skip to main content

Newtonian and Post-Newtonian Calculations of Coalescing Compact Binaries

  • Chapter
Relativistic Astrophysics
  • 253 Accesses

Abstract

Coalescing binary neutron stars are important sources of gravitational waves that should become detectable with the laser interferometers now being built as part of LIGO, VIRGO and GEO. Post-Newtonian (PN) approximation methods have been used to calculate waveform templates in the low-frequency, slow-inspiral phase of the binary evolution. These theoretical templates can be used to extract parameters such as the neutron star (NS) masses and spins. In the slowinspiral phase the two stars are still well separated and can be treated essentially as point masses. Near the end of the coalescence, however, hydrodynamic effects and the interior structure of the stars play an increasingly important role. Hydrodynamics becomes dominant when the two stars finally merge together into a single object. The shape of the corresponding burst of gravitational waves provides a direct probe into the interior structure of a NS and the nuclear equation of state (EOS). The interpretation of the gravitational waveform data will require detailed theoretical models of the complicated 3D hydrodynamic processes involved. This review summarizes recent work on the hydrodynamic aspects of NS binary coalescence. Newtonian and, more recently, relativistic calculations have been performed. The methods include both approximate quasi-analytic techniques and large-scale numerical hydrodynamics calculations on supercomputers. Also included here is a brief discussion of coalescing white dwarf (WD) binaries, which are important sources of very low-frequency gravitational waves, potentially detectable by LISA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramovici, A., Althouse, W.E., Dreyer, R.W.P., Gürsel, Y., Kawamura, S., Raab, F., Shoemaker, D., Sievers, L., Spero, R.E., Thorne, K.S., Vogt, R.E., Weiss, R., Whitcomb, S.E., and Zucker, M.E. (1992): LIGO: The Laser Interferometer Gravitational-Wave Observatory. Science, 256, 325

    Article  Google Scholar 

  • Baffles, M. (1996): In: Compact Stars in Binaries (eds. J. van Paradijs et al.). Kluwer, Dordrecht, 213

    Google Scholar 

  • Bailyn, C.D. (1993): In: Structure and Dynamics of Globular Clusters (eds. S.G. Djorgovski and G. Meylan ). San Francisco: ASP Conf. Series, 50, 191

    Google Scholar 

  • Baumgarte, T.W., Shapiro, S.L., Cook, G.B., Scheel, M.A., and Teukolsky, S.A. (1997): In: Proceedings of the 18th Texas Symposium on Relativistic Astrophysics (eds. A. Olinto et al.). World Scientific, in press

    Google Scholar 

  • Baym, G. (1991): In: Neutron Stars: Theory and Observation (eds. J. Ventura and D. Pines). Kluwer, Dordrecht, 21

    Google Scholar 

  • Benz, W., Bowers, R.L., Cameron, A.G.W., and Press, W.H. (1990): Dynamic Mass Exchange in Doubly Degenerated Binaries. I. 0.9 and 1.2 MO Stars. Astrophys. J., 348, 647

    Article  Google Scholar 

  • Bildsten, L. and Cutler, C. (1992): Tidal Interactions of Inspiraling Compact Binaries. Astrophys. J., 400, 175

    Article  Google Scholar 

  • Blanchet, L., Iyer, B.R., Will, C.M., and Wiseman, A.G. (1996): Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order. Class. Quant. Gray., 13, 575

    Article  MATH  Google Scholar 

  • Bradaschia, C., Del Fabro, R., Di Virgilio, A., Giazotto, A., Kautzky, H., Montelatici, V., Passuello, D., Brillet, A., Cregut, O., Hello, P., Man, C.N., Manh, P.T., Marraud, A., Shoemaker, D., Vinet, J.Y., Barone, F., Di Fiore, L., Milano, L., Russo, G., Aguirregabiria, J.M., Bel, H., Duruisseau, J.P., Le Denmat, G., Tourrenc, Ph., Capozzi, M., Longo, M., Lops, M., Pinto, I., Rotoli, G., Damour, T., Bonazzola, S., Marck, J.A., Gourghoulon, Y., Holloway, L.E., Fuligni, F., Iafolla, V., and Natale, G. (1990): The Virgo Project: A Wide Band Antenna for Gravitational Wave Detection. Nucl. Instr. Methods A, 289, 518

    Google Scholar 

  • Canal, R., Garcia, D., Isern, J., and Labay, J. (1990): Can C+O White Dwarfs Form Neutron Stars? Astrophys. J., 356, L51

    Article  Google Scholar 

  • Chandrasekhar, S. (1969): Ellipsoidal Figures of Equilibrium. Yale University Press, New Haven; Revised Dover edition 1987

    Google Scholar 

  • Chandrasekhar, S. (1975): On Coupled Second-Harmonic Oscillations of the Congruent Darwin Ellipsoids. Astrophys. J., 202, 80

    Article  Google Scholar 

  • Chen, K. and Leonard, P.J.T. (1993): Does the Coalescence of White Dwarfs Produce Millisecond Pulsars in Globular Clusters? Astrophys. J., 411, L75

    Article  Google Scholar 

  • Chernoff, D.F. and Finn, L.S. (1993): Gravitational Radiation, Inspiring Binaries, and Cosmology. Astrophys. J., 411, L5

    Article  Google Scholar 

  • Clark, J.P.A. and Eardley, D.M. (1977): Evolution of Close Neutron Star Binaries. Astrophys. J., 251, 311

    Article  Google Scholar 

  • Colgate, S.A. (1990): In: Supernovae (ed. S.E. Woosley). Springer-Verlag, New York, 585

    Google Scholar 

  • Cook, G.B., Shapiro, S.L., and Teukolsky, S.A. (1994): Rapidly Rotating Neutron Stars in General Relativity: Realistic Equations of State. Astrophys. J., 424, 823

    Article  Google Scholar 

  • Curran, S.J. and Lorimer, D.R. (1995): Pulsar statistics. III. Neutron star binaries. Mon. Not. Roy. Astron. Soc., 276, 347

    Google Scholar 

  • Cutler, C. and Flanagan, E.E. (1994): Gravitational Waves from Merging Compact Binaries: How Accurately Can One Extract the Binary’s Parameters from the Inspirai Waveform? Phys. Rev. D, 49, 2658

    Article  Google Scholar 

  • Cutler, C., Apostolatos, T.A., Bildsten, L., Finn, L.S., Flanagan, E.E., Kennefick, D., Markovic, D.M., Ori, A., Poisson, E., Sussman, G.J., and Thorne, K.S. (1993): The Last Three Minutes: Issues in Gravitational-Wave Measurements of Coalescing Compact Binaries. Phys. Rev. Lett., 70, 2984

    Article  Google Scholar 

  • Davies, M.B., Benz, W., Piran, T., and Thielemann, F.K. (1994): Merging Neutron Stars. Astrophys. J., 431, 742

    Article  Google Scholar 

  • Eichler, D., Livio, M., Piran, T., and Schramm, D.N. (1989): Nucleosynthesis, Neutrino Bursts and -y-Rays from Coalescing Neutron Stars. Nature, 340, 126

    Article  Google Scholar 

  • Evans, C.R., Iben, I., and Smarr, L. (1987): Degenerate Dwarf Binaries as Promising, Detectable Sources of Gravitational Radiation. Astrophys. J., 323, 129

    Article  Google Scholar 

  • Finn, L.S. and Chernoff, D. (1993): Observing Binary Inspirai in Gravitational Radiation: One Interferometer. Phys. Rev. D, 47, 2198

    Article  Google Scholar 

  • Flanagan, E.E. and Hughes, S.A. (1997): Measuring gravitational waves from binary black hole coalescences: I. Signal to noise for inspiral, merger, and ringdown. Phys. Rev. D, submitted

    Google Scholar 

  • Goldstein, H. (1980): Classical Mechanics. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Iben, I., Jr., and Tutukov, A.V. (1984): Supernovae of Type I as end products of the evolution of binaries with components of moderate initial mass (M9M 0 ). Astrophys. J. Suppl., 54, 335

    Article  Google Scholar 

  • Iben, I., Jr., and Tutukov, A.V. (1986): On the Number-Mass Distribution of Degenerate Dwarfs Produced by Interacting Binaries and Evidence for Mergers of Low-Mass Helium Dwarfs. Astrophys. J., 311, 753

    Article  Google Scholar 

  • Janka, H.-T. and Ruffert, M. (1996): Can Neutrinos from Neutron Star Merges Power -y-Ray Bursts? Astron. Astrophys., 307, L33

    Google Scholar 

  • Jaranowski, P. and Krolak, A. (1992): Detectability of the Gravitational Wave Signal from a Close Neutron Star Binary with Mass Transfer. Astrophys. J., 394, 586

    Article  Google Scholar 

  • Junker, W. and Schäfer, G. (1992): Binary Systems: Higher Order Gravitational Radiation Damping and Wave Emission. Mon. Not. Roy. Astron. Soc., 254, 146

    Google Scholar 

  • Kidder, L.E., Will, C.M., and Wiseman, A.G. (1992): Innermost stable orbits for coalescing binary systems of compact objects. Class. Quantum Gray., 9, L125

    Article  Google Scholar 

  • Kochanek, C.S. (1992): Coalescing Binary Neutron Stars. Astrophys. J., 398, 234

    Article  Google Scholar 

  • Lai, D. (1996): Tidal Stabilization of Neutron Stars and White Dwarfs. Phys. Rev. Lett., 76, 4878

    Article  Google Scholar 

  • Lai, D. and Shapiro, S.L. (1995): Hydrodynamics of Coalescing Binary Neutron Stars: Ellipsoidal Treatment. Astrophys. J., 443, 705

    Article  Google Scholar 

  • Lai, D. and Wiseman, A.G. (1997): Innermost Stable Circular Orbit of Inspiraling Neutron-Star Binaries: Tidal Effects, Post-Newtonian Effects, and the Neutron-Star Equation of State. Phys. Rev. D., 54, 3958

    Article  Google Scholar 

  • Lai, D., Rasio, F.A., and Shapiro, S.L. (1993a): Hydrodynamic instability and coalescence of close binary systems. Astrophys. J. Suppl., 88, 205

    Article  Google Scholar 

  • Lai, D., Rasio, F.A., and Shapiro, S.L. (1993b): Hydrodynamic Instability and Coalescence of Close Binary Systems. Astrophys. J., 406, L63

    Article  Google Scholar 

  • Lai, D., Rasio, F.A., and Shapiro, S.L. (1994a): Hydrodynamic Instability and Coalescence of Binary Neutron Stars. Astrophys. J., 420, 811

    Article  Google Scholar 

  • Lai, D., Rasio, F.A., and Shapiro, S.L. (1994b): Equilibrium, Stability, and Orbital Evolution of Close Binary Systems. Astrophys. J., 423, 344

    Article  Google Scholar 

  • Lai, D., Rasio, F.A., and Shapiro, S.L. (1994c): Hydrodynamics of Rotating Stars and Close Binary Interactions: Compressible Ellipsoid Models. Astrophys. J., 437, 742

    Article  Google Scholar 

  • Lincoln, C.W. and Will, C.M. (1990): Coalescing Binary Systems of Compact Objects to (Post)5/2-Newtonian Order: Late-Time Evolution and Gravitational-Radiation Emission. Phys. Rev. D, 42, 1123

    Article  Google Scholar 

  • Lipunov, V.M., Postnov, K.A., and Prokhorov, M.E. (1997): Black holes and gravitational waves: simultaneous discovery by initial laser interferometers. Astron. Lett.,in press

    Google Scholar 

  • Livio, M., Pringle, J.E., and Saffer, R.A. (1992): Planets around Massive White Dwarfs. Mon. Not. Roy. Astron. Soc., 257, 15

    Google Scholar 

  • Lombardi, J.C., Rasio, F.A., and Shapiro, S.L. (1996): Collisions of Main-Sequence Stars and the Formation of Blue Stragglers in Globular Clusters. Astrophys. J., 468, 797

    Article  Google Scholar 

  • Lombardi, J.C., Rasio, F.A., and Shapiro, S.L. (1997): Post-Newtonian Models of Binary Neutron Stars. Phys. Rev. D,in press

    Google Scholar 

  • Markovie, D. (1993): Possibility of Determining Cosmological Parameters from Measurements of Gravitational Waves Emitted by Coalescing, Compact Binaries. Phys. Rev. D, 48, 4738

    Article  Google Scholar 

  • Mathews, G.J. and Wilson, J.R. (1997): Binary Induced Neutron-Star Compression, Heating, and Collapse. Astrophys. J.,in press

    Google Scholar 

  • Meegan, C.A., Fishman, G.J., Wilson, R.B., Paciesas, W.S., Pendleton, G.N., Horack, J.M., Brock, M.N., and Kouveliotou, C. (1992): Spatial Distribution of y-Ray Bursts Observed by BATSE. Nature, 355, 143

    Article  Google Scholar 

  • Meers, B.J. (1988): Recycling in Laser-Interferometric Gravitational-Wave Detectors. Phys. Rev. D, 38, 2317

    Article  Google Scholar 

  • Mochkovitch, R. and Livio, M. (1989): The Coalescence of White Dwarfs and Type I Supernovae. Astron. Astrophys., 209, 111

    Google Scholar 

  • Nakamura, T. (1994): In: Relativistic Cosmology (ed. M. Sasaki). Universal Academy Press, Tokyo, 155

    Google Scholar 

  • Narayan, R., Paczynski, B., and Piran, T. (1992): Gamma-Ray Bursts as the Death Throes of Massive Binary Stars. Astrophys. J., 395, L83

    Article  Google Scholar 

  • Narayan, R., Piran, T., and Shemi, A. (1991): Neutron Star and Black Hole Binaries in the Galaxy. Astrophys. J., 379, L17

    Article  Google Scholar 

  • New, K.C.B. and Tohline, J.E. (1997): The Relative Stability against Merger of Close, Compact Binaries. Astrophys. J.,in press

    Google Scholar 

  • Nomoto, K. and Iben, I., Jr. (1985): Carbon Ignition in a Rapidly Accreting Degenerate Dwarf: A Clue to the Nature of the Merging Process in Close Binaries. Astrophys. J., 297, 531

    Article  Google Scholar 

  • Nomoto, K. and Kondo, Y. (1991): Conditions for Accretion-Induced Collapse of White Dwarfs. Astrophys. J., 367, L19

    Article  Google Scholar 

  • Nomoto, K., Yamaoka, H., Shigeyama, T., and Iwamoto, K. (1995): In: Supernovae and Super- nova Remnants (eds. R.A. McCray et al.). Cambridge University Press, Cambridge

    Google Scholar 

  • Paczynski, B. (1985): In: Cataclysmic Variables and Low-mass X-ray Binaries (eds. D.Q. Lamb and J. Patterson). Reidel, Dordrecht, 1

    Google Scholar 

  • Paczynski, B. (1986): Gamma-Ray Bursters at Cosmological Distances. Astrophys. J., 308, L43

    Article  Google Scholar 

  • Paczynski, B. (1990): X-Ray Pulsar IE 2259+586: A Merged White Dwarf with a 7 Second Rotation Period? Astrophys. J., 365, 19

    Article  Google Scholar 

  • Paczynski, B. and Wiita, P.J. (1980): Thick Accretion Disks and Supercritical Luminosities. Astron. Astrophys., 88, 23

    Google Scholar 

  • Phinney, E.S. (1991): The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors. Astrophys. J., 380, L17

    Article  Google Scholar 

  • Podsiadlowski, P., Pringle, J.E., and Rees, M.J. (1991): The Origin of the Planet Orbiting PSR 1829–10. Nature, 352, 783

    Article  Google Scholar 

  • Portegies Zwart, S.F. and Spreeuw, H.N. (1996): The Galactic Merger Rate of (NS, NS) Binaries. I. Perspective for Gravity-Wave Detectors. Astron. Astrophys., 312, 670

    Google Scholar 

  • Rasio, F.A. (1995): The Minimum Mass Ratio of W Ursae Majoris Binaries. Astrophys. J., 444, L41

    Article  Google Scholar 

  • Rasio, F.A. and Shapiro, S.L. (1992): Hydrodynamical Evolution of Coalescing Binary Neutron Stars. Astrophys. J., 401, 226

    Article  Google Scholar 

  • Rasio, F.A. and Shapiro, S.L. (1994): Hydrodynamics of Binary Coalescence. I. Polytropes with Stiff Equations of State. Astrophys. J., 432, 242

    Article  Google Scholar 

  • Rasio, F.A. and Shapiro, S.L. (1995): Hydrodynamics of Binary Coalescence. II. Polytropes with P = 5/3. Astrophys. J., 438, 887

    Article  Google Scholar 

  • Ruffert, M., Janka, H.-T., and Schäfer, G. (1996): Coalescing Neutron Stars — A Step towards Physical Models. Astron. Astrophys., 311, 532

    Google Scholar 

  • Ruffert, M., Janka, H.-T., Takahashi, K., and Schäfer, G. (1997): Coalescing neutron stars — a step towards physical models: II. Neutrino emission, neutron tori, and gamma-ray bursts. Astron. Astrophys.,in press

    Google Scholar 

  • Schutz, B.F. (1986): Determining the Hubble Constant from Gravitational Wave Observations. Nature, 323, 310

    Article  Google Scholar 

  • Shapiro, S.L. and Teukolsky, S.A. (1983): Black Holes, White Dwarfs, and Neutron Stars. Wiley, New York

    Google Scholar 

  • Shibata, M. (1996): Instability of Synchronized Neutron Stars in the First Post-Newtonian Approximation of General Relativity. Prog. Theor. Phys., 96, 317

    Article  Google Scholar 

  • Shibata, M., Nakamura, T., and Oohara, K. (1992): Coalescence of Spinning Binary Neutron Stars of Equal Mass. Prog. Theor. Phys., 88, 1079

    Article  Google Scholar 

  • Strain, K.A. and Meers, B.J. (1991): Experimental Demonstration of Dual Recycling for Interferometric Gravitational-Wave Detectors. Phys. Rev. Lett., 66, 1391

    Article  Google Scholar 

  • Taniguchi, K. and Nakamura, T. (1996): Innermost stable circular orbit of coalescing neutron star — black hole binary. Prog. Theor. Phys., 96, 693

    Article  Google Scholar 

  • Tassoul, M. (1975): On the Stability of Congruent Darwin Ellipsoids. Astrophys. J., 202, 803 Tassoul, J.-L. (1978): Theory of Rotating Stars. Princeton University Press, Princeton

    Google Scholar 

  • Taylor, J.H. and Weisberg, J.M. (1989): Further Experimental Tests of Relativistic Gravity Using the Binary Pulsar PSR 1913+16. Astrophys. J., 345, 434

    Article  Google Scholar 

  • Thorne, K.S. (1995): Gravitational Waves. In: Proceedings of the Snowmass 95 Summer Study on Particle and Nuclear Astrophysics (eds. E.W. Kolb and R. Peccei ). World Scientific, Singapore

    Google Scholar 

  • Thorne, K.S. (1996): In: Compact Stars in Binaries, IAU Symp. 165 (eds. J. van Paradijs et al.). Kluwer, Dordrecht, 153

    MATH  Google Scholar 

  • Thorsett, S.E., Arzoumanian, Z., McKinnon, M.M., and Taylor, J.H. (1993): The Masses of Two Binary Neutron Star Systems. Astrophys. J., 405, L29

    Article  Google Scholar 

  • Tutukov, A.V. and Yungelson, L.R. (1993): The Merger Rate of Neutron Star and Black Hole Binaries. Mon. Not. Roy. Astron. Soc., 260, 675

    Google Scholar 

  • Usov, V.V. (1992): Millisecond Pulsars with Extremely Strong Magnetic Fields as a Cosmological Source of -y-Ray Bursts. Nature, 357, 472

    Article  Google Scholar 

  • Heuvel, E.P.J. and Lorimer, D.R. (1996): On the Galactic and Cosmic Merger Rate of Double Neutron Stars. Mon. Not. Roy. Astron. Soc., 283, L37

    Article  Google Scholar 

  • Webbink, R.F. (1984): Double White Dwarfs as Progenitors of R Coronae Borealis Stars and Type I Supernovae. Astrophys. J., 277, 355

    Article  Google Scholar 

  • Will, C.M. (1994): In: Relativistic Cosmology (ed. M. Sasaki). Universal Academy Press, Tokyo, 83

    Google Scholar 

  • Wilson, J.R. and Mathews, G.J. (1989): In: Frontiers in Numerical Relativity (eds. C.R. Evans et al.). Cambridge University Press, Cambridge, 306

    Google Scholar 

  • Wilson, J.R. and Mathews, G.J. (1995): Instabilities in Close Neutron Star Binaries. Phys. Rev. Lett., 75, 4161

    Article  Google Scholar 

  • Wilson, J.R., Mathews, G.J., and Marronetti, P. (1996): Relativistic numerical model for close neutron-star binaries. Phys. Rev. D, 54, 1317

    Article  Google Scholar 

  • Wiseman, A.G. (1993): Coalescing Binary Systems of Compact Objects to (post)5/2-Newtonian Order. IV. The Gravitational Wave Tail. Phys. Rev. D, 48, 4757

    Article  Google Scholar 

  • Wolszczan, A. (1991): A nearby 37,9-ms Radio Pusar in a Relativistic Binary System. Nature, 350, 688

    Article  Google Scholar 

  • Wolszczan, A. (1994): Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B 1257+12. Science, 264, 538

    Article  Google Scholar 

  • Yungelson, L.R., Livio, M., Tutukov, A.V., and Saffer, R.A. (1994): Are the Observed Frequencies of Double Dengerates and SN la Contradictory? Astrophys. J., 420, 336

    Article  Google Scholar 

  • Zhuge, X., Centrella, J.M., and McMillan, S.L.W. (1994): Gravitational Radiation from Coalescing Binary Neutron Stars. Phys. Rev. D, 50, 6247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harald Riffert Hanns Ruder Hans-Peter Nollert Friedrich W. Hehl

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Rasio, F.A. (1998). Newtonian and Post-Newtonian Calculations of Coalescing Compact Binaries. In: Riffert, H., Ruder, H., Nollert, HP., Hehl, F.W. (eds) Relativistic Astrophysics. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-11294-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-11294-5_12

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-11296-9

  • Online ISBN: 978-3-663-11294-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics