Skip to main content

Part of the book series: Teubner Studienskripten Elektrotechnik ((TSTST))

  • 112 Accesses

Zusammenfassung

1964 sind von theoretischer und experimenteller Seite Ergebnisse mitgeteilt worden, die intensive nachfolgende Untersuchungen auslösten. Dies führte schließlich zu einem völlig neuartigen Mikrowellenbauelement. Die Experimente sind mit dem Namen J.B. Gunn verbunden und die theoretischen Analysen mit den Namen B.K. Ridley, T.B. Watkins und C. Hilsum. Die Interpretation der Experimente Gunns mit Hilfe der Vorschläge von Ridley, Watkins und Hilsum ist H. Kroemer zu verdanken. Das Auftreten von Hochfelddomänen in einem geeigneten Halbleiter (vgl. Abschnitt I) bezeichnet man als den Gunn-Effekt. Das zugrundeliegende physikalische Prinzip der Streuung von Elektronen in einen Zustand verminderter Beweglichkeit und dem damit verbundenen Auftreten einer negativen differentiellen Beweglichkeit bezeichnet man als den Elektronen-Transfer-Effekt. Ein anschauliches Verständnis der wesentlichen Züge des Gunn-Effektes ist relativ leicht möglich. Es läßt sich auch eine phänomenologische Beschreibung in analytischer Form geben, die gut mit Rechnerergebnissen übereinstimmt. Trotzdem sind viele — auch grundlegende — Parameter selbst mit großem Aufwand nicht rechnerisch zu erfassen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. J.R. Chelikowsky, M.L. Cohen, Nonlocal pseudopoten-tial calculations for the electronic structure of eleven diamond and zincblende semiconductors, Phys. Rev. B 14, 556, 1976.

    Article  Google Scholar 

  2. D.E. Aspnes, Lower conduction band structure of GaAs, Gallium Arsenide and Related Compounds 1976 (Inst. Phys. Conf. Ser. 33b) S. 110.

    Google Scholar 

  3. z.B. in: W. Heywang, H.W. Pötzl, Bänderstruktur und Stromtransport, Springer 1976.

    Book  Google Scholar 

  4. P.N. Butcher, W. Fawcett, Proc. Phys. Soc. (London) 86, 1205, 1965

    Article  Google Scholar 

  5. P.N. Butcher, W. Fawcett, Phys. Lett. 21, 489, 1966

    Article  Google Scholar 

  6. P.N. Butcher, Rep. on Progress in Phys. 30, 97, 1967

    Article  Google Scholar 

  7. J.B. Bott, W. Fawcatt, Advances in Microwaves 3, 223, 1968.

    Google Scholar 

  8. R. Bosch, H.W. Thim, Computer Simulation of Transferred Electron Devices Using the Displaced Maxwel-lian Approach, IEEE Trans. Electron Dev. ED-21, 16, 1974.

    Article  Google Scholar 

  9. J.S. Ruch, G.S. Kino, Measurement of the velocity field characteristic of Gallium Arsenide, Appl. Phys. Lett. 10, 40, 1967

    Article  Google Scholar 

  10. N. Braslau, P.S. Hauge, Microwave measurement of the velocity-field characteristic of GaAs, IEEE Trans. Electron Dev. ED-17, 616, 1970.

    Article  Google Scholar 

  11. P.M. Boers, Comment on determination of the velocity field characteristic for n-type indium phosphide from dipole-domain measurements, Electronics Lett. 9, 134, 1973.

    Article  Google Scholar 

  12. J.H. Marsh, P.A. Houston, P.N. Robson, Compositional Dependence of the Mobility, Peak Velocity and Threshold Field in In1-xGaxAsyP1-y , Gallium Arsenide and Related Compounds 1980 (Inst. Phys. Conf. Ser. no. 56) S. 621.

    Google Scholar 

  13. T.H. Windhorn, L.W. Cook, G.E. Stillman, High-field electron transport in InxGa1-xAsyP1-y(λ = 1.2μm).Appl. Phys. Lett. 41, 1065, 1982.

    Google Scholar 

  14. M.A. Littlejohn, J.R. Hauser, T.H. Glisson, Velocity-field characteristics of Ga1-xInxP1-yAsy quaternary alloy, ibid. 30, 242, 1977.

    Google Scholar 

  15. W. Kowalsky, A. Schlachetzki, H.-H. Wehmann, Transferred-Electron Domains in In0.53Ga0.47AS in Dependence on the nl Product, Solid-State Electronics 27, 187, 1984.

    Article  Google Scholar 

  16. J.B. Gunn, On the Shape of Travelling Domains in Gallium Arsenide, IEEE Trans. Electron Dev. ED-14, 720, 1967.

    Article  Google Scholar 

  17. P.N. Butcher, Theory of stable domain propagation in the Gunn effect, Phys. Lett. 19, 546, 1965.

    Article  MathSciNet  Google Scholar 

  18. J.W. Allen, W. Shockley, G.L. Pearson, Gunn domain dynamics, J. Appl. Phys. 37, 3191, 1966.

    Article  Google Scholar 

  19. T. Ikoma, T. Sugeta, H. Torizuka, H. Yanai, Characteristics of the Transferred Electron Devices, J. Fac. Eng., Univ. Tokyo (B), XXX, 348, 1970.

    Google Scholar 

  20. J.E. Carroll, Hot Electron Microwave Generators, Arnold, London 1970, S .100 f.

    Google Scholar 

  21. A. Schlachetzki, Pulse Rise Time in Planar Gunn Devices, Japan. J. Appl. Phys. 14, 1335, 1975.

    Article  Google Scholar 

  22. A.N. Valentyuk, A.V. Latyshev, V.F. Stel’makh, Dynamics of the growth and quenching of a high-field domain in the Gunn effect, Sov. Phys. Semicond. 9, 112, 1975.

    Google Scholar 

  23. A. Schlachetzki, Domain Dissolution in Planar Gunn Devices, phys. stat. sol. (a), K 151, 1976.

    Google Scholar 

  24. E. Reinecker, M. Claassen, Switching properties of highly doped Gunn devices in resistive circuits, Solid-State Electronics 22, 25, 1979.

    Article  Google Scholar 

  25. H. Kroemer, The Gunn Effect under Imperfect Cathode Boundary Conditions, IEEE Trans. Electron Dev. ED-15, 819, 1968.

    Article  Google Scholar 

  26. H. Yanai, N. Suzuki, T. Sugeta, M. Tanimoto, Effect of electrode structure on dipole-domain formation, Gallium Arsenide and related compounds 1970 (Inst. Phys. Conf. Ser. no. 9) S. 153.

    Google Scholar 

  27. B.S. Perlman, Space Charge Instabilities in Transferred Electron Devices, RCA Rev. 34, 457, 1973.

    Google Scholar 

  28. M.E. Levinshtein, M.S. Shur, Physical investigations of the Gunn effect (review), Sov. Phys. Semicond. 9, 411, 1975.

    Google Scholar 

  29. K. Heime, A. Schlachetzki, Pulse Generation in Planar Gunn Devices with Varying nl Product, Electronics Lett. 8, 203, 1972.

    Article  Google Scholar 

  30. W. Kowalsky, A. Schlachetzki, H.-H. Wehmann, Transferred-electron domains in In0.53Ga0.47AS in dependence on the nl product, Solid-State Electronics 27, 187, 1984.

    Article  Google Scholar 

  31. W. Kowalsky, A. Schlachetzki, Transferred Electron Effect in InGaAsP Alloys Lattice-Matched to InP, Solid-State Electronics, im Druck.

    Google Scholar 

  32. H.W. Thim, Gunn amplifiers, Solid State Devices, 1971 (Inst. Phys. Conf. Ser. no. 12), S. 87.

    Google Scholar 

  33. S. Kataoka, H. Tateno, M. Kawashima, Suppression of travelling high-field-domain mode oscillations in GaAs by dielectric surface loading, Electronics Lett. 5, 48, 1969.

    Article  Google Scholar 

  34. S. Kataoka, H. Tateno, M. Kawashima, Observation of current instabilities in a dielectric-surface-loaded n type GaAs bulk element, ibid. 5, 114, 1969.

    Article  Google Scholar 

  35. A. Schlachetzki, K. Mause, Measurement of the influence of the nd product on the Gunn effect, ibid. 8, 640, 1972.

    Article  Google Scholar 

  36. P.J. Bulman, G.S. Hobson, B.C. Taylor, Transferred Electron Devices, Academic Press 1972, S. 116.

    Google Scholar 

  37. F.L. Warner, Extension of the Gunn effect theory given by Robson and Mahrous, Electronics Lett. 2, 260, 1966.

    Article  Google Scholar 

  38. J.A. Copeland, LSA oscillator diode theory, J. Appl. Phys. 38, 3096, 1967.

    Article  Google Scholar 

  39. J.A. Copeland, Characterization of bulk negative resistance diode behaviour, IEEE Trans. Electron Dev. ED-14, 461, 1967.

    Article  Google Scholar 

  40. D.E. McCumber, A.G. Chynoweth, Theory of Negative-Conductance Amplification and of Gunn Instabilities in “Two-Valley” Semiconductors, ibid. ED-13, 4, 1966.

    Article  Google Scholar 

  41. I.G. Eddison, I. Davies, P.L. Giles, D.M. Brookbanks, Efficient fundamental frequency oscillation from millimetre-wave indium phosphide n+-n-n+ transferred electron oscillators, Electronics Lett. 17, 758, 1981.

    Article  Google Scholar 

  42. H.-C. Huang, L.A. Mackenzie, A Gunn Diode Operated in the Hybrid Mode, Proc. IEEE 56, 1232, 1968.

    Article  Google Scholar 

  43. B.G. Bosch, R.W.H. Engelmann, Gunn-effect Electronics, Pitman, London 1975, S. 166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Schlachetzki, A. (1984). Elektronen-Transfer-Bauelemente. In: Halbleiterbauelemente der Hochfrequenztechnik. Teubner Studienskripten Elektrotechnik. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-10245-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-10245-8_3

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-519-00099-0

  • Online ISBN: 978-3-663-10245-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics