Skip to main content

Part of the book series: European Consortium for Mathematics in Industry ((XECMI))

  • 67 Accesses

Abstract

Some one-dimensional models for optical tunnelling are discussed. The exponentially small imaginary part of the eigenvalue, which determines the radiation loss, is expressed in terms of an integral of the refractive index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, M.V. (1989) ‘Uniform asymptotic smoothing of Stokes discontinuities’, Proc. Roy. Soc. London A422, 7–21.

    Google Scholar 

  2. Brazel, N., Lawless, F.R. and Wood, A.D. (1992) ‘Exponential asymptotics for the eigenvalues of a problem involving parabolic cylinder functions’, Proc. Am. Math. Soc., to appear.

    Google Scholar 

  3. Burzlaff, J. and Wood, A.D. (1991) ‘Optical tunnelling from one-dimensional square-well potentials’, IMA J. Applied Math. 47, 207–215.

    Google Scholar 

  4. Coleman, S. (1979) ‘The uses of instantons’, in Zichichi, A.(ed.), The Whys of Sub-nuclear Physics, Plenum Publ. Co., New York, pp. 805–916.

    Google Scholar 

  5. Kath, W.L. and Kriegsmann, G.A. (1988) ‘Optical tunnelling: Radiation losses in bent fibre-optic waveguides’, IMA J. Appl. Math. 43, 85–103.

    Article  MathSciNet  Google Scholar 

  6. Liu, J. and Wood, A.D. (1991) ‘Matched asymptotics for a generalisation of a model equation for optical tunnelling’, Euro. J. Appl. Math. 2, 223–231.

    Article  MathSciNet  MATH  Google Scholar 

  7. Diver, F.W.J. (1991) ‘Uniform, exponentially improved, asymptotic expansions for the confluent hypergeometric function and other integral transforms’, SIAM J. Math. Anal. 22, 1475–1489.

    Article  MathSciNet  Google Scholar 

  8. Paris, R.B. and Wood, A.D. (1989) ‘A model equation for optical tunnelling’, IMA J. Appl. Math. 43, 273–284.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Burzlaff, J. (1992). A Barrier Penetration Formula for Optical Tunnelling Models. In: Hodnett, F. (eds) Proceedings of the Sixth European Conference on Mathematics in Industry August 27–31, 1991 Limerick. European Consortium for Mathematics in Industry. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-09834-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-09834-8_13

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-09835-5

  • Online ISBN: 978-3-663-09834-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics