Skip to main content

Differential Invariants and Curvature Flows in Active Vision

  • Chapter
Operators, Systems and Linear Algebra

Part of the book series: European Consortium for Mathematics in Industry ((XECMI))

  • 146 Accesses

Abstract

In this paper, we discuss the use of differential invariants, and curvature driven flows for active vision. We concentrate on three problem areas: invariant flows, active contours, and L 1-based methods for optical flow and stereo. The solutions to these key problems will all be based on curvature based evolutions which are obtained in a completely natural manner from geometric and physical principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel, “Axioms and fundamental equations of image processing,” Arch. Rational Mechanics 123 (1993), pp. 200–257.

    MathSciNet  Google Scholar 

  2. L. Alvarez, P. L. Lions, and J. M. Morel, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM J. Numer. Anal. 29 (1992), pp. 845–866.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Angenent, G. Sapiro, and A. Tannenbaum, “On the affine heat equation for non-convex curves,” submitted for publication, 1996.

    Google Scholar 

  4. A. D. Bimbo, P. Nesi, and J. L. C. Sanz, “Optical flow computation using extended constraints,” Technical report, Dept. of Systems and Informatics, University of Florence, 1992.

    Google Scholar 

  5. A. Blake, R. Curwen, and A. Zisserman, “A framework for spatio-temporal control in the tracking of visual contours,” to appear in Int. J. Compter Vision.

    Google Scholar 

  6. W. Blaschke, Vorlesungen über Differentialgeometrie II, Verlag Von Julius Springer, Berlin, 1923.

    Google Scholar 

  7. E. Calabi, P. Olver, and A. Tannenbaum, “Affine geometry, curve flows, and invariant numerical approximations,” Advances in Mathematics 124 (1996), pp. 154–196.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Calabi, P. Olver, C. Shakiban, and A. Tannenbaum, “Differential and numerically invariant signature curves applied to object recognition,” to appear in Int. J. Computer Vision, 1996.

    Google Scholar 

  9. E. Cartan, La Méthode du Repére Mobile, la Théorie des Groupes Continus, et les Espaces Généralisés; Exposés de Géométrie, Hermann, Paris, 1935.

    Google Scholar 

  10. V. Casselles, F. Catte, T. Coll, and F. Dibos, “A geomteric model for active contours in image processing,” Numerische Mathematik 66 (1993), pp. 1–31.

    Article  MathSciNet  Google Scholar 

  11. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic snakes,” to appear in Int. J. Computer Vision.

    Google Scholar 

  12. O. Faugeras, “On the evolution of simple curves of the real projective plane,” Comptes rendus de l’Acad. des Sciences de Paris 317, pp. 565–570, September 1993.

    MathSciNet  MATH  Google Scholar 

  13. O. Faugeras and R. Keriven, “Scale-spaces and affine curvature,” Proc. Europe-China Workshop on Geometric Moddeling and Invariants for Computer Vision, edited by R. Mohr and C. Wu, 1995, pp. 17–24.

    Google Scholar 

  14. C. Foias, H. Ozbay, and A. Tannenbaum, Robust Control of Distributed Parameter Systems, Lecture Notes in Control and Information Sciences 209, Springer-Verlag, New York, 1995.

    Google Scholar 

  15. M. Grayson, “The heat equation shrinks embedded plane curves to round points,” J. Differential Geometry 26 (1987), pp. 285–314.

    MathSciNet  MATH  Google Scholar 

  16. B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, 23: 185–203, 1981.

    Article  Google Scholar 

  17. G. R. Jensen, Higher order contact of submanifolds of homogeneous spaces, Lecture Notes in Math. 610, New York, Springer-Verlag, 1977.

    Google Scholar 

  18. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, “Conformal curvature flows: from phase transitions to active vision,” Archive of Rational Mechanics and Analysis 134 (1996), pp. 275–301.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Kumar, A. Tannenbaum, and G. Balas, “Optical flow: a curve evolution approach,” IEEE Transactions on Image Processing 5 (1996), pp. 598–611.

    Article  Google Scholar 

  20. A. Kumar, S. Haker, C. Vogel, A. Tannenbaum, and S. Zucker, “Stereo disparity and L’ minimization,” to appear in Proceedings of CDC, December 1997.

    Google Scholar 

  21. S. Lie, “Theorie der Transformationsgruppen I,” Math. Ann. 16 (1880), pp. 441–528.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Malladi, J. Sethian, B. and Vermuri, “Shape modelling with front propagation: a level set approach,” IEEE PAMI 17 (1995), pp. 158–175.

    Article  Google Scholar 

  23. D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Comm. on Pure and Applied Math. 42 (1989).

    Google Scholar 

  24. P. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press, 1995.

    Google Scholar 

  25. P. Olver, G. Sapiro, and A. Tannenbaum, “Affine invariant edge maps and active contours,” submitted for publication, 1997.

    Google Scholar 

  26. P. Olver, G. Sapiro, and A. Tannenbaum, “Differential invariant signatures and flows in computer vision: a symmetry group approach,” in Geometry Driven Diffusion in Computer Vision, edited by Bart ter Haar Romeny, Kluwer, 1994.

    Google Scholar 

  27. P. Olver, G. Sapiro, and A. Tannenbaum, “Invariant geometric evolutions of surfaces and volumetric smoothing,” SIAM J. on Analysis, February 1997.

    Google Scholar 

  28. S. J. Osher and J. A. Sethian, “Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics 79 (1988), pp. 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Machine Intell. 12 (1990), pp. 629–639.

    Article  Google Scholar 

  30. T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature 317 (1985), pp. 314–319.

    Article  Google Scholar 

  31. B. ter Haar Romeny (editor), Geometry-Driven Diffusion in Computer Vision, Kluwer, Holland, 1994.

    MATH  Google Scholar 

  32. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60 (1993), 259–268.

    Article  Google Scholar 

  33. G. Sapiro and A. Tannenbaum, “On affine plane curve evolution,” Journal of Functional Analysis 119 (1994), pp. 79–120.

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Sapiro and A. Tannenbaum, “Affine invariant scale-space,” International Journal of Computer Vision 11 (1993), pp. 25–44.

    Article  Google Scholar 

  35. G. Sapiro and A. Tannenbaum, “Invariant curve evolution and image analysis,” Indiana University J. of Mathematics 42 (1993), pp. 985–1009.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. A. Sethian, “A review of recent numerical algorithms for hypersurfaces moving with curvature dependent speed,” J. Differential Geometry 31 (1989), pp. 131–161.

    MathSciNet  Google Scholar 

  37. J. Shah, “Recovery of shapes by evolution of zero-crossings,” Technical Report, Math. Dept. Northeastern Univ, Boston MA, 1995.

    Google Scholar 

  38. C. Vogel, “Total variation regularization for ill-posed problems,” Technical Report, Department of Mathematics, Montana State University, April 1993.

    Google Scholar 

  39. A. P. Witkin, “Scale-space filtering,” Int. Joint. Conf. Artificial Intelligence, pp. 1019–1021, 1983.

    Google Scholar 

  40. A. Yezzi, S. Kichenesamy, A. Kumar, P. Olver, and A. Tannenbaum, “Geometric active contours for segmentation of medical imagery,” IEEE Trans. Medical Imaging 16 (1997), pp. 199–209.

    Article  Google Scholar 

  41. A. Yezzi, “Modified mean curvature motion for image smoothing and enhancement, to appear in IEEE Trans. Image Processing, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

This paper is dedicated with much admiration and affection to Professor Paul Fuhrmann on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Tannenbaum, A., Yezzi, A. (1997). Differential Invariants and Curvature Flows in Active Vision. In: Helmke, U., Prätzel-Wolters, D., Zerz, E. (eds) Operators, Systems and Linear Algebra. European Consortium for Mathematics in Industry. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-09823-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-09823-2_16

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-09824-9

  • Online ISBN: 978-3-663-09823-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics