Skip to main content

Zusammenfassung

Glatirameracetat (GLAT, Synomina: Copolymer-1, COP-1; Copaxone®) ist ein synthetisches Tetrapeptid aus den 4 Aminosäuren L-Glutaminsäure, L-Lysin und L-Alanin, L-Tyrosin in zufälliger Mischungsreihenfolge. Die ursprüngliche Absicht bei der Entwicklung von GLAT in den 60er Jahren am Weizmann Institut in Rehovot (Israel) bestand darin, Peptide zu generieren, die den immunbiologischen Eigenschaften von basischem Myelinprotein (MBP) als vermutetem Antigen bei MS ähneln und eine experimentelle Encephalomyelitis (EAE) erzeugen können. Im Gegensatz dazu standen die konsekutiven In-vivoBefunde. Es zeigte sich, dass GALT nicht wie gewünscht pathogen war und zudem wider der Erwartung sogar eine protektive Wirkung bei der Induktion der EAE besitzt (Teitelbaum et al. 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aharoni R et al., Proc Nat Acad Sci 1997; 94: 10821–10826.

    Article  Google Scholar 

  2. Bornstein MB et al., N Engl J Med 1987; 317: 408–414.

    Article  Google Scholar 

  3. Bornstein MB, Johnson KP. In: Rudick RA, Goodkin DE (editors). Treatment of multiple sclerosis. Trial design, results und future perspectives. Springer-Verlag, Heidelberg 1996: 173–198.

    Google Scholar 

  4. Comi G et al., Ann Neurol 2000; 49: 290–297.

    Article  Google Scholar 

  5. Duda PW et al., J Clin Invest 2000; 105: 967–976.

    Article  Google Scholar 

  6. Johnson KP et al., Neurology 1995; 45: 1268–1276.

    Article  Google Scholar 

  7. Johnson KP et al., Neurology 1998; 50: 701–708.

    Article  Google Scholar 

  8. Johnson KP et al., Mult Scler 2000; 6: 255–266.

    Google Scholar 

  9. Jung S et al., J Neurol 2001; 248: 135.

    Google Scholar 

  10. Mancardi GL et al., Neurology 1998; 50: 1127–1133.

    Article  Google Scholar 

  11. Multiple Sklerose Therapie Konsensusgruppe (MSTKG). M. Nervenarzt 2001; 72: 150–157.

    Article  Google Scholar 

  12. Neuhaus O et al., Proc Natl Acad Sci 2000; 97: 7452–7457.

    Article  Google Scholar 

  13. Teitelbaum D et al., Eur J Immunol 1971; 1: 242–248.

    Article  Google Scholar 

  14. Teitelbaum D et al., Proc Natl Acad Sci 1988; 85: 9724–9728.

    Article  Google Scholar 

  15. Zettl UK, Mix E. Klinische Neuroimmunologie. Walter de Gruyter. Berlin, New York 1999.

    Google Scholar 

  16. Zettl UK, Mix E. Multiple Sklerose: Kausalorientierte, symptomatische und rehabilitative Therapie. Springer-Verlag, Heidelberg, New York 2001.

    Google Scholar 

  17. Savoiardo M et al., Eur Radiol 2001.

    Google Scholar 

  18. Vanneste JAL, J Neurol 2000.

    Google Scholar 

  19. Pantel J et al., Dementia Geriatr cogn Disord 1998.

    Google Scholar 

  20. Miele R et al., J Neural Transm Suppl 1998.

    Google Scholar 

  21. Hirono N et al., Stroke 2000.

    Google Scholar 

  22. Pagani M et al., Dementia Geriatr cogn Disord 2001.

    Google Scholar 

  23. Savolainen et al., AJNR Am J Neuroradiol 2000.

    Google Scholar 

  24. Loeb et al., J Neurol Sci 1996.

    Google Scholar 

  25. Wahlund LO et al., J Neurol Neurosurg Psychiatry 2000.

    Google Scholar 

  26. Fukui T et al., J Neurol Sci 2000.

    Google Scholar 

  27. Clauss JJ et al., Neurology 1994.

    Google Scholar 

  28. Van Gool WA et al., J Neurol 1995.

    Google Scholar 

  29. Hanyu H et al., Gerontology 1993.

    Google Scholar 

  30. Laakso MP et al., Neurobiol Ageing 1998.

    Google Scholar 

  31. Shonk T et al., Radiology 1995.

    Google Scholar 

  32. Hanyu H et al., No To Shinkei 1995.

    Google Scholar 

  33. Scheltens P et al., Ann NY Acad Sci 2000.

    Google Scholar 

  34. Pavics L et al., Eur J Nucl Med 1999.

    Google Scholar 

  35. Rui JP et al., Proc Natl acad Sci 1995.

    Google Scholar 

  36. Obricn JT et al., Int Psychogeriatr 2001.

    Google Scholar 

  37. Herminghaus et al., In: 1st Intern. Congress on Vascular Dementia,1999.

    Google Scholar 

  38. Braak H, Braak E. Cortical and subcortical argyrophilic grains characterize a disease associated with adult onset dementia. Neuropath Appl Neurobiol 1989; 15: 13–26.

    Article  Google Scholar 

  39. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239–59.

    Article  Google Scholar 

  40. Brun A, Englund B, Gustayson L. Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiat 1994; 57: 416–18.

    Article  Google Scholar 

  41. Coria F, Rubio I. Cerebral amyloid angiopathies. Neuropathol Appl Neurobiol 1996; 22: 216–27.

    Article  Google Scholar 

  42. Drach LM, Steinmetz HEE, Wach S, Bohl J. High proportion of dementia with Lewy bodies in the postmortems of a mental hospital in Germany. Int J Geriat Psychiatry 1997; 12: 301–6.

    Article  Google Scholar 

  43. Förstl H, Baldwin B. Pick and die frontale Hirnatrophie. Fortschr Neurol Psychiat 1994; 62: 345–55.

    Article  Google Scholar 

  44. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, Lennox G, Quinn NP, Edwardson JA, Ince PG, Bergeron C, Burns A, Miller BL, Lovestone S, Collerton D, Jansen ENH, Ballard C, deVos RAI, Wilcock GK, Jellinger KA, Perry RH. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the consortium on DLB international workshop. Neurology 1996; 47: 1113–24.

    Article  Google Scholar 

  45. Tomlinson BE, Blessed G, Roth M. Observation of the brains of demented old people. J Neurol Sci 1970; 11: 205–42.

    Article  Google Scholar 

  46. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes MS, van Belle G, Berg L. The Consortium to Establish a Registry for Alzheimerís Disease (CERAD). (II) Standardization of the neuropathologic assessment of Alzheimer disease. Neurology 1991; 41: 479–486.

    Article  Google Scholar 

  47. Neuropathology Group Medical Research Council Cognitive Function ans Ageing Study (MRC CFAS). Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet 2001; 357: 169–75.

    Article  Google Scholar 

  48. Calabrese P (1997) Neuropsychologische Aspekte der Multiplen Sklerose. Psycho 12: 751–763.

    Google Scholar 

  49. Colosimo et al. (1995) Fatigue in MS is associated with specific clinical features. Acta Neurol Scand 92: 353–355.

    Google Scholar 

  50. Fischer et al. (2000) Neuropsychological effects of Interferon (- la in relapsing multiple sclerosis. Ann Neurol 48: 885–892.

    Google Scholar 

  51. Greim B et al. (200la) Qualitative and quantitative evaluation of fatigue in MS. J Neurol 248: 176–177.

    Google Scholar 

  52. Greim B et al. (2001b) Fatigue testing in Multiple Sclerosis. Mult Scler 7: 27.

    Google Scholar 

  53. Haupts et al. (2001) Neuropsychologische Befunde und Therapieoptionen bei Multipler Sklerose. In: Multiple Sklerose: kausalorientierte, symptomatische und rehabilitative Therapie. U.K. Zettl, E. Mix (Hrsg.), Springer-Verlag, Berlin, Heidelberg, New York, 251–270.

    Google Scholar 

  54. Horn W (1983) Leistungs-Prüf-System. 2. erw. u. verb. Aufl. Hogrfe, Göttingen, Toronto, Zürich.

    Google Scholar 

  55. Krupp et al. (1994) Cognitive functions and depression in patients with Chronic Fatigue Syndrom in multiple sclerosis. Arch Neurol: 51: 705–710.

    Google Scholar 

  56. Kujala et al.j(1997) The progress of cognitive decline in multiple sclerosis: A controlled 3–year follow up. Brain 120: 289–297.

    Google Scholar 

  57. Metz et al. (2001) Treating MS-related fatigue: Preliminary data of Glatiramer Acetate efficacy. Oral presentation, European Congress of Treatment and Research in Multiple Sclerosis (ECTRIMS) Dublin 14.09. 2001.

    Google Scholar 

  58. Rao et al. (1984) Memory disturbance in chronic propressive multiple sclerosis. Arch Neurol 41 (6), 625–631.

    Google Scholar 

  59. Sturm W, Willmes K. (1997) Verbaler (VLT) und nonverbaler Lerntest (NVLT). Hogrefe Verlag.

    Google Scholar 

  60. Zimmermann P, Fimm B. (1993) Testbatterie zur Aufmerksamkeitsprüfung (TAP) Psychologische Testsysteme. V. Fimm, Würselen.

    Google Scholar 

  61. Buttgereit F, Brand MD, Burmeister GR. Equivalent doses and relative drug potencies for non-genomic glucocorticoid effects: a novel glucocorticoid hierarchy. Biochem Pharmacol 1999; 58: 363–368.

    Article  Google Scholar 

  62. Buttgereit F, Burmeister GR, Brand MD. Bioenergetics of immune functions: fundamental and therapeutic aspects. Immunol Today 2000; 21: 192–199.

    Article  Google Scholar 

  63. Gold R, Toyka KV. Immuntherapie neurologischer Erkrankungen. UNI-MED Verlag AG Bremen, London, Boston 2001.

    Google Scholar 

  64. Gold R, Buttgereit F, Toyka KV. Mechanism of action of glucocorticosteroid hormones: possible implications for therapy of neuroimmunological disorders. J Neuroimmunol 2001; 117: 1–8.

    Article  Google Scholar 

  65. Lipworth BJ. Therapeutic implications of non-genomic glucocorticoid activity. Lancet 2000; 356: 87–89.

    Article  Google Scholar 

  66. Schmidt J, Gold R, Schönrock L, Zettl UK, Hartung HP, Toyka KV. T-cell apoptosis in situ in experimental autoimmune encephalomyelitis following methylprednisolone pulse therapy. Brain 2000; 123: 1431–1441.

    Article  Google Scholar 

  67. Schneider C, Matsumoto Y, Kohyama K, Toyka KV, Hartung HP, Gold R. Experimental autoimmune myositis in the Lewis rat: lack of spontaneous T-cell apoptosis and therapeutic response to glucocorticosteroid application. J Neuroimmunol 2000; 107: 83–87.

    Article  Google Scholar 

  68. Zettl UK, Mix E. Klinische Neuroimmunologie. Walter de Gruyter. Berlin, New York 1999.

    Google Scholar 

  69. Zettl UK, Gold R, Toyka KV, Hartung HP. Intravenous glucocorticosteroid treatment augments apoptosis of inflammatory T cells in experimental autoimmune neuritis (EAN) of the Lewis rat. J Neuropathol Exp Neurol 1995; 54: 540–547.

    Article  Google Scholar 

  70. Colosimo C et al. (1995): Fatigue in MS is associated with specific clinical features. Acta Neurol Scand 92: 353–355.

    Article  Google Scholar 

  71. Comi G (2001): Definition and pathophysiology of MS-related fatigue. Oral presentation, European Committee for Treatment and Reasearch in Multiple Sclerosis [ECTRIMS], Dublin, 14. Sept. 2001.

    Google Scholar 

  72. Greim B et al. (2001a): Qualitative and quantitative evaluation of fatigue in MS. J Neurol 248: 176–177.

    Google Scholar 

  73. Greim B et al. (200 lb): Fatigue testing in Multiple Sclerosis. Mult Scler 7: 27.

    Google Scholar 

  74. Haupts M et al. (2001): Neuropsychologische Befunde und Therapieoptionen bei Multipler Sklerose. In: Multiple Sklerose: Kausalorientierte symptomatische und rehabilitative Therapie. U.K. Zettl, E. Mix (Hrsg.), Springer-Verlag, Berlin Heidelberg New York, 251–270.

    Chapter  Google Scholar 

  75. Krupp L et al. (1995): Cognitive functioning and depression in patients with CFS and MS. Arch Neurol 51: 705–710.

    Article  Google Scholar 

  76. Rolak SM (1993): Fatigue and Multiple Sclerosis. In: Dawson DM, Sabin TD (Ed): Chronic Fatigue Syndrom. Little, Brown and Co. Boston Toronto London

    Google Scholar 

  77. Zimmermann C, Hohlfeld R. (1999): Fatigue bei Multipler Sklerose. Der Nervenarzt 6: 566–574.

    Google Scholar 

  78. Zimmermann P, Fimm B (1993): Testbatterie zur Aufmerksamkeitsprüfung (TAP), Psytest,Würselen.

    Google Scholar 

  79. Bogerts B. (1995): Hirnbiologie Schizophrener und deren therapeutische Beeinflussbarkeit. In: Bogerts B. (Hrsg.): Therapie der Schizophrenie. Köln. Signum.

    Google Scholar 

  80. Braun-Scharm H. (2001): Coping bei schizophrenen Jugendlichen. Prax Kinderpsychol Kinderpsychiatr 50: 104–118.

    Google Scholar 

  81. Häßler F., Tiedtke K., Fegert J.M. (1999): Individuelle Heilversuche mit atypischen Antipsychotika in der Behandlung von early onset schizophrenia in der Kinder-und Jugendpsychiatrie. In: Fegert J.M., Häßler F., Rothärmel S.: Atypische Neuroleptika in der Jugendpsychiatrie. Stuttgart New York. Schattauer. Remschmidt H. (1993): Schizophrenic psychoses in children and adolescents. Triangle 32: 15–24.

    Google Scholar 

  82. AWMF — Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (2000). Leitlinien zu Diagnostik und Therapie von psychischen Störungen im Säuglings-, Kindes-und Jugendalter. Köln. Ärzte- Verlag.

    Google Scholar 

  83. Eikelmann B., Reker T., Albers M. (1999): Die psychiatrische Tagesklinik. Stuttgart. Thieme-Verlag.

    Google Scholar 

  84. Huss M., Jenetzky E., Lehmkuhl U. (2001): Tagesklinische Versorgung kinder-und jugendpsychiatrischer Patienten in Deutschland: Eine bundesweite Erhebung unter Berücksichtigung von Kosten-Nutzen-Aspekten. Prax Kinderpsychol Kinderpsychiatr 50: 31–44.

    Google Scholar 

  85. Reinhardt H. G. (1987): Die kinder-und jugendpsychiatrische Tagesklinik. Nervenarzt 58: 509–513.

    Google Scholar 

  86. Figiel GS, Epstein C, McDonald WM, et al.: The use of rapid-rate transcranial magnetic stimulation (rTMS) in refractory depressed patients. J Neuropsychiatry Clin Neurosci 1998; 10 (1): 20–5.

    Google Scholar 

  87. George MS, Wassermann EM, Williams W, et al.: Changes in mood and hormone levels after rapid-rate transcranial magnetic stimulation of the prefrontal cortex. J Neuropsychiatry Clin Neurosci 1996; 8: 172–180.

    Google Scholar 

  88. Pascual-Leone A, Catala MD: Lateralized effects of rTMS of the prefrontal cortex on mood. Neurology 1996; 46: 499–502.

    Article  Google Scholar 

  89. Feinsod M, Kreinin B, Chistyak A, et al.: Preliminary evidence for beneficial effect of low-frequency, repetitive transcranial magnetic stimulation in patients with major depression and schizophrenia. Depression and Anxiety 1998; 7: 65–68.

    Article  Google Scholar 

  90. Klein E, Kreinin I, Chistyakov A, et al.: Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression. Arch Gen Psychiatry 1999; 56: 315–320.

    Article  Google Scholar 

  91. Grunhaus L, Dannon PN, Schreiber S, et al.: Repetitive transcranial magnetic stimulation is as effective as electroconvulsive therapy in the treatment of nondelusional major depressive disorder: an open study. Biol Psychiatry 2000; 47: 314–324.

    Article  Google Scholar 

  92. Chen R, Gerloff C, Classen J, et al.: Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. Electroencephal Clin Neurophysiol 1997; 105 (6): 415–421.

    Article  Google Scholar 

  93. Pascual-Leone A, Valls-Sole J, Wassermann EM, et al.: Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994; 117: 847–858.

    Article  Google Scholar 

  94. Paus T, Jech R, Thompson CJ, et al.: Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex. J Neurophysiol 1998; 79 (2): 1102–7.

    Google Scholar 

  95. Pecuch PW, Evers S, Folkerts H. W., et al.: The cerebral hemodynamics of repetitive transcranial magnetic stimulation. Eur Arch Psychiatry Clin Neurosci 2000; 250: 320–324.

    Article  Google Scholar 

  96. Ducros A. et al.: N Engl J Med 2001; 345: 17–24.

    Article  Google Scholar 

  97. Fitzsimons R. B., Wolfenden W. H.: Brain 1985; 108: 555–577.

    Article  Google Scholar 

  98. Headache Classific. Committ. of the Internat. Headache Society, Cephalgia 1988;8; Supp 7: 1–96.

    Google Scholar 

  99. Whitty CWM.: J Neurol Neurosurg Psychiatry 1953;16:172–177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Zettl, U.K. et al. (2001). Zusammenfassung der Vorträge. In: Bildgebende Verfahren in der Neurologie und Psychiatrie. Deutscher Universitätsverlag, Wiesbaden. https://doi.org/10.1007/978-3-663-09415-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-09415-9_1

  • Publisher Name: Deutscher Universitätsverlag, Wiesbaden

  • Print ISBN: 978-3-8244-2149-7

  • Online ISBN: 978-3-663-09415-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics