Entscheidungsverfahren zur Lösung multikriterieller Probleme und ihre Eignung bei multipersonalen Entscheidungssituationen

  • Ruth Paschka

Zusammenfassung

Um Entscheidungsverfahren hinsichtlich ihrer Eignung bei Vorliegen von Multipersonalität beurteilen zu können, ist es sinnvoll, sie zunächst einer Systematisierung130 zu unterziehen. Dieses geschieht zum einen, um einen Überblick über die vorhandenen Vorgehensweisen im Bereich der multikriteriellen Entscheidungstheorie zu verschaffen, zum anderen, um — aufbauend auf dieser Basis — Kriterien darzustellen, die als geeignet erscheinen, Verfahren hinsichtlich ihrer Eignung bei multipersonalen Problemen einzuordnen. Im folgenden wird zunächst eine Klassifizierung der Verfahren für multikriterielle Entscheidungsprobleme vorgenommen. Auf dieser Basis erfolgt die Kurzdarstellung der wichtigsten Verfahren sowie jeweils eine knappe Beurteilung hinsichtlich ihrer Anwendung bei multipersonalen Entscheidungsproblemen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 130.
    Im folgenden werden die Begriffe Klassifikation und Systematisierung synonym verwendet. 131 Aufgrund der unterschiedlichen Bedeutungen der Bezeichnungen im angelsächsischen und deutschen Sprachgebrauch werden die Begriffe für den weiteren Gebrauch innerhalb der vorliegenden Arbeit folgendermaßen definiert: attribute / attributive = Attribute oder Eigenschaften / attributiv objective = Kriterien, kriteriell goal = Zielwert (fest vorgegebener Zielwert) criteria (MCDM) = Ziel (Mehrzielentscheidungen).Google Scholar
  2. 132.
    Vgl. beispielsweise Zeleny, M.: Multiple Criteria Decision Making, a.a.O., S. 17.Google Scholar
  3. 133.
    Im folgenden wird in der Regel die Kurzform MCDM herangezogen.Google Scholar
  4. 134.
    Vgl. Jacquet-Lagrèze, E.: Basic Concepts for Multicriteria Decision Support, in: Fandel, G. / Spronk, J. (eds.): Multiple Criteria Decision Methods and Applications, Selected Readings of the First Summer School Acireale, Sicily, September 1983, Berlin u.a. 1985, S. 11. Hwang/Yoon nennen außerdem noch das Maximin-Prinzip und die Nutzentheorie innerhalb der Entscheidungstheorie, das Pareto-Optimum, von Neumann/Morgenstern-Nutzen, Sozialwahlfunktionen und Nutzen-Kosten-Analyse innerhalb der Wirtschaftswissenschaften, die multivariate Regression und die Faktoranalyse im Bereich der Statistik sowie die Multidimensionale Skalierung und die Conjointanalyse innerhalb der Psychometrie. Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making a.a.O., S. 5; vgl. auch zur Entwicklung und den wichtigsten Vertretern Fishburn, P. C.: Foundations of Decision Analysis: Along the Way, in: Management Science, Vol. 35, No. 4, April 1989, S. 387ff.Google Scholar
  5. 135.
    Vgl. z.B. Nitzsch, R. v.: Analytic Hierarchy Process und Multiattributive Werttheorie im Vergleich, in: WiSt, Heft 3, März 1993, S. 111–116; Rischmüller, G.: Die multi-attributive Nutzentheorie — Ein Entscheidungshilfeverfahren bei mehrfacher Zielsetzung, in: Zfbf, 1980, S. 498–518. Zur Anwendung von MAUT vgl. ebenda, S. 515. Zur Beurteilung von Software zur Unterstützung des EntscheidungsträgersGoogle Scholar
  6. 135a.
    vgl. Nitzsch, R. v. / Schauff, M.: Software zur Unterstützung von Mehrfachzielentscheidungen, in: DBW 55 (1995) 4, S. 513–529Google Scholar
  7. 135b.
    Buede, D. M.: Software Review: Overview of the MCDA Software Market, in: Journal of Multi-Criteria Decision Analysis, Vol. 1, No. 1, July 1992, S. 59–61; derselbe: Software Review: Three Packages for AHP: Criterium, Expert Choice and HIPRE 3+, in: Journal of Multi-Criteria Decision Analysis, Vol. 1, No. 2, October 1992, S. 119–121. Zur Einbeziehung von RisikenCrossRefGoogle Scholar
  8. 135c.
    vgl. Payne, J. W. / Laughhunn, D. J. / Crum, R.: Multiattribute Risky Choice Behavior: The Editing of Complex Prospects, in: Management Science, Vol. 30, No. 11, November 1984, S. 1350–1361. Zur Erweiterung bezüglich der NichtlinearitätCrossRefGoogle Scholar
  9. 135d.
    vgl. beispielsweise Fishburn, P. C.: Multiattribute Nonlinear Utility Theory, in: Management Science, Vol. 30, No. 11, November 1984, S. 1301–1310. Neuere Ansätze versuchen, die Verbindung von der Nutzentheorie mit der Netzwerkanalyse zu verbinden.CrossRefGoogle Scholar
  10. 135e.
    Vgl. hierzu beispielsweise Malokooti, B. / Zhou, Y. Q.: Feedforward Artificial Neural Networks for Solving Discrete Multiple Criteria Decision Making Problems, in: Management Science, Vol. 40, No. 1 1, November 1994, S. 1542–1561.CrossRefGoogle Scholar
  11. 136.
    Vgl. z.B. hierzu auch Wertzahlmodelle, Scoring-Modelle und das Vendor Rating System. Sie wurden beispielsweise als mögliche Verfahren bei der Lieferantenwahl genannt. Vgl. Kahle, E.: Produktion, 4. Auflage, München / Wien 1996, S. 195ff.Google Scholar
  12. 137.
    Vgl. z.B. Wolff, R.: Wohlfahrtsökonomik, in: Woll, A. (Hrsg.): Wirtschaftslexikon, 5. Auflage, München / Wien 1991, S. 785ff.;Google Scholar
  13. 137a.
    Schumann, J.: Grundzüge der mikroökonomischen Theorie, 4. Auflage, Berlin u.a. 1984, S. 226.CrossRefGoogle Scholar
  14. 138.
    Hierzu vergleiche die Ansätze der Erstellung von Sozialwahlfunktionen beispielsweise in Hwang, C.-L. / Lin, M.-J.: Group Decision Making under Multiple Criteria — Methods and Applications, Lecture Notes in Economics and Mathematical Systems, Managing Editors: M. Beckmann and W. Krelle, Band 281, Berlin / Heidelberg 1987, S. 2ff.Google Scholar
  15. 139.
    Vgl. z.B. den Einbezug der Psychoanalyse innerhalb der Führungslehre bei Wunderer, R. / Grunwald, W.: Führungslehre, I. Grundlagen der Führung, Berlin / New York 1980, S. 160ff. oder die Bemühungen, innerhalb der Psychologie, bestimmte Verhaltensformen zu erfassen. Zu letzterem vgl. beispielsweise Nolting, H.-P. / Paulus, P.: Psychologie lernen — Eine Einführung und Anleitung, 3. Auflage, München 1990, S. 165ff.Google Scholar
  16. 140.
    Zur Entwicklung des Operations Research vgl. zum Beispiel Müller-Merbach, H.: Grundlagen des Operations Research, Methoden und Modelle der Optimalplanung, 3. Auflage, München 1973, S. 10ff.; Ellinger, Th.: Operations Research — Eine Einführung, Berlin u.a. 1984, S. 1f.; Gal, T. / Gehring, H.: Betriebswirtschaftliche Planungs- und Entscheidungstechniken, Berlin / New York 1981, S. 1f.Google Scholar
  17. 141.
    Vgl. z.B. Schuchard-Ficher, Chr. / Backhaus, K. / Humme, U. / Lohrberg, W. / Plinke, W. / Schreiner, W.: Multivariate Analysemethoden — Eine anwendungsorientierte Einführung, 2. Auflage, Berlin / Heidelberg / New York 1982, 105ff.;CrossRefGoogle Scholar
  18. 141a.
    Green, P. E. / Tull, D. S.: Methoden und Techniken der Marketingforschung, 4. Auflage, Deutsche Übersetzung von R. Köhler und Mitarbeitern, Stuttgart 1982, S. 254ff.Google Scholar
  19. 142.
    Vgl. hierzu beispielsweise Hanne, T.: On the Classification of MCDM Literatur, in: Schweigert, D. (ed.): Methods of Multicriteria Decision Theory, Proceedings of the 5th Workshop of the DGOR-Working Group Multicriteria Optimization and Decision Theory, Pfalzakademie, Lambrecht 1995, Kaiserslautern 1995, S. 113–120. Eine Möglichkeit der Klassifizierung besteht in der Unterteilung nach dem Zeitpunkt der Präferenzermittlung. Goicoechea / Hansen / Duckstein differenzieren zwischen der Möglichkeit keiner Präferenzermittlung, der Präferenzermittlung vor Heranziehung eines Verfahrens und einer progressiven Präferenzermittlung mittels interaktiver Verfahren. Hierbei wird innerhalb des Bereiches der a priori Ermittlung beziehungsweise Bestimmung der Präferenzen des Entscheidungsträgers eine zweite Klassifizierung in stetige und diskrete Verfahren vorgenommen. Vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, a.a.O., S. 98. Diese Vorgehensweise der Systematisierung berücksichtigt vor einer eingehenden Analyse der Entscheidungssituation, insbesondere der Zielvariablen, die Anforderungen beziehungsweise Abläufe von Verfahren. In einem zweiten Schritt erfolgt eine Differenzierung bezüglich der vorliegenden Alternativen. Es wird demnach der Entscheidungsprozeß in seiner logischen Abfolge nicht hinsichtlich der einzelnen Phasen betrachtet, sondern von einer ersten Unterteilung der Verfahren innerhalb der vierten Phase (Vergleich der Alternativen) zu einer weiteren Klassifikation anhand der Merkmale in der dritten Phase (Erstellung beziehungsweise Ermittlung des Alternativenraumes) zurückgeschritten. Die Vorgehensweise widerspricht somit den logisch nacheinander abfolgenden Phasen des Entscheidungsprozesses. Eine weitere Möglichkeit, in erster Linie auf die Verfahren zur Lösung multikriterieller Entscheidungsprobleme abzustellen, besteht in der Differenzierung zwischen mathematischen Programmierungsverfahren und Auswahl- und Sortierverfahren. Bei der weiteren Unterteilung wird entweder erneut hinsichtlich der Methoden oder hinsichtlich des Zeitpunktes der Präferenzermittlung unterschieden, wobei eine Differenzierung bezüglich der Zielbetrachtung erst später erfolgt. Vgl. Nitzsch, R. von: Entscheidung bei Zielkonflikten, a.a.O., S. 16ff. Auch bei dieser Unterteilung wird die erste Phase der Zielformulierung beziehungsweise Präzisierung des Zielsystems erst sekundär berücksichtigt, wobei hinsichtlich der Art der Zielformulierung nicht weiter differenziert wird, sondern lediglich die Präferenzen des Entscheidungsträgers herangezogen werden. Steuer hingegen nimmt eine erste Unterteilung hinsichtlich der spezifischen Verfahrensschritte und der innerhalb des mathematischen Modells berücksichtigten Funktionen in Multiple Objective Linear Programming (MOLP), Goalprogramming (GP), Multiple Objective Fractional Programming (MOLFP) und interaktive Methoden vor.Google Scholar
  20. 142a.
    Vgl. Steuer, R. E.: Multiple Criteria Optimization: Theory, Computation, and Application, New York u.a. 1986, S. 99 ff. Zu einem Programm des MOLPGoogle Scholar
  21. 142b.
    vgl. beispielsweise Warwick, K. M.: ... Computer Abstracts — Adbase, in: Journal of Marketing Research, Vol. XII (November 1975), S. 454–460. Zu einem AnwendungsbeispielGoogle Scholar
  22. 142c.
    vgl. z.B. Steuer, R. E.: Sausage Blending Using Multiple Objective Linear Programming, in: Management Science, Vol. 30, No. 11, November 1984, S. 1376–1384. Einen frühen Überblick liefert Evans. Vgl. Evans, G. W.: An Overview of Techniques for Solving Multiobjective Mathematical Programs, in: Management Science, Vol. 30, No. 1 1, November 1984, S. 1268–1282, insbesondere Figure 1. Classification of Reviewed or Cited References for Solving Multiobjective Mathematical Programs, S. 1272.CrossRefGoogle Scholar
  23. 143.
    Vgl. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, in: Cochrane, J. L. / Zeleny, M. (eds.): Multiple Criteria Decision Making, Columbia, South Carolina 1973, S. 20.Google Scholar
  24. 144.
    Bei dieser Betrachtung bleiben die möglichen Rückkopplungen im zeitlichen Ablauf eines Entscheidungsprozesses außer Betracht, da hier nur die logische Abfolge zu berücksichtigen ist. Jede Rückkopplung würde zu einer anderen Systematisierung führen.Google Scholar
  25. 145.
    Vgl. Abbildung des Entscheidungsprozesses, S.16.Google Scholar
  26. 146.
    Vgl. hierzu auch die Ausführungen auf Seite 22ff.Google Scholar
  27. 147.
    MCDM-Techniken basieren in erster Linie auf unipersonalen Entscheidungen, das heißt, der Aspekt der Multipersonalität wurde kaum beachtet. Vgl. Iz P. / Jelassi, M.: An Interactive Group Decision Aid for Multiobiective Problems. a.a.O.. S. 596.Google Scholar
  28. 148.
    Ansätze, Multipersonlität mit Verfahren der Mehrzielproblematik zu verknüpfen, wurden beispielsweise im Bereich der Nutzentheorie von v. Nitzsch und im Bereich der Spieltheorie von Wengler entworfen. Vgl. Nitzsch, R. von: Entscheidungen bei Zielkonflikten, a.a.O.; Wengler, F.: Spieltheoretische Ansätze zur Lösung multikriterieller Entscheidungsmodelle, Reihe Wirtschaftswissenschaften Bd. 362, Frankfurt am Main 1989.Google Scholar
  29. 149.
    Vgl. z.B. MacCrimmon, K. R.: An Overview of Multiple Objective Decision, a.a.O., S. 20; Weber, K.: Mehrkriterielle Entscheidungen, München / Wien 1993, S. 11 f.Google Scholar
  30. 150.
    Hierdurch sind die Zielvorschriften nicht wohl-definiert. Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 4. Zum Begriff wohl-definiertes Entscheidungsproblem vgl. Kahle, E.: Betriebliche Entscheidungen, a.a.O., S. 19f. Eine umfassende Literaturübersicht bezüglich MADM in Verbindung mit einer Bibliographie findet sich bei Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making. a.a.O.. S. 7 und 226f.Google Scholar
  31. 151.
    Vgl. Hwang. C.-L. / Yoon. K.: Multiple Attribute Decision Making, a.a.O., S. 3.Google Scholar
  32. 152.
    Vgl. ebenda.Google Scholar
  33. 153.
    Die Anwendung beruht auf dem Gebiet des Design. Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 2.Google Scholar
  34. 154.
    Ebenda, Tabelle 1.1, S. 4.Google Scholar
  35. 155.
    Hierbei erfolgt die primäre Systematisierung auf der Ebene der Zielsystempräzisierung. Es wird jedoch ersichtlich, daß dieses gleichermaßen ihren Einfluß auf nachgelagerte Entscheidungsprozeßphasen ausübt. So wird beispielsweise als Folge des Kriteriums über die Zieleigenschaften gleichzeitig innerhalb der Phase der Ermittlung möglicher Handlungsalternativen eine Aufteilung hinsichtlich der Eigenschaften des Alternativenraumes vorgenommen. Das heißt, daß vorgelagerte Systematisierungen direkten Einfluß auf die Eigenarten der nachfolgenden Entscheidungsprozeßphasen und damit auf zusätzliche Klassifikationen haben, beziehungsweise hier bereits feste Eigenschaften eines Entscheidungsproblems bestimmen.Google Scholar
  36. 156.
    Eine Systematisierungsmöglichkeit der MADM-Verfahren besteht in der primären Unterteilung in diskrete und stetige Methoden, wobei eine sekundäre Differenzierung hinsichtlich qualitativer und quantitativer Daten vorgenommen wird. Hierbei führen quantitative diskrete Methoden in einer Weiterentwicklung zu stetigen Verfahren, während qualitative diskrete Methoden zur Fuzzy Set Theorie führen. Vgl. Nijkamp, P. / Voogd, H.: An Informal Introduction to Multicriteria Evaluation, in: Fandel, G. / Spronk, J. (Hrsg.): Multiple Criteria Decision Methods and Applications, Selected Readings of the First International Summer School Acireale, Sicily, September 1983, Berlin u.a. 1985, S. 71 ff. Diese Differenzierung berücksichtigt somit die Art der vorliegenden Zielfunktionen, aber nicht die Beziehungen der Zielfunktionen zueinander; das heißt es wird nicht explizit danach unterschieden, ob Präferenzen des Entscheidungsträgers vorliegen oder nicht. Desweiteren erfolgt keine weitere Unterteilung bezüglich der Art der Informationen über die Alternativen. Es werden lediglich die Verfahren, die bei MADM-Problemen herangezogen werden können, in Klassen aufgeteilt, wobei die Verfahren selbst keiner weiteren Systematisierung unterzogen werden.Google Scholar
  37. 157.
    Die folgenden Klassifizierungen beruhen auf Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 8 ff. MacCrimmon charakterisiert MADM-Probleme durch eine Wahl aus einer Alternativenmenge, die durch Attribute beziehungsweise Eigenschaften beschrieben werden, wobei in der Regel davon ausgegangen wird, daß der Entscheidungsträger Präferenzen bezüglich der Ausprägungen der Attribute und bezüglich der Wichtigkeit der Attribute angeben kann. Entweder wird er direkt nach den Präferenzen befragt oder die Präferenzen werden aus vergangenen Schritten geschlossen. Vgl. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 19.Google Scholar
  38. 158.
    Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 9.Google Scholar
  39. 159.
    Hwang/Yoon nennen desweiteren das Maximax-Prinzip des bedingungslos optimistisch eingestellten Entscheidungsträgers. Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 9. Literaturhinweise siehe dieselben, S. 10 in Verbindung mit dem Literaturverzeichnis.Google Scholar
  40. 160.
    Vgl. Weber, M.: Entscheidungen bei Mehrfachzielen — Verfahren zur Unterstützung von Individual- und Gruppenentscheidungen —, Bochumer Beiträge zur Unternehmensführung und Unternehmensforschung, Band 26, Wiesbaden 1983.Google Scholar
  41. 161.
    Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 60ff.Google Scholar
  42. 162.
    Vgl. ebenda, S. 68ff. MacCrimmon unterteilt die sequentiellen Ausschlußmethoden in einen Vergleich jeder Alternative mit einem vorgegebenen Standard, einen Vergleich der Alternativen mit Alternativen bezüglich aller Attribute, und einen Vergleich von Alternativen mit Alternativen bezüglich eines einzelnen Attributs. Die Disjunktiv- und Konjunktiv-Methoden sowie das Dominanprinzip zählt er zu dem Alternativenvergleich hinsichtlich aller Attribute. Vgl. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 30f. Goicoechea u.a. zählen diese Methode zu den Verfahren bei Vorliegen ordinaler Werte. Vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, a.a.O., S. 170f.Google Scholar
  43. 163.
    Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 211.Google Scholar
  44. 164.
    Vgl. ebenda, S. 68ff.Google Scholar
  45. 165.
    Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 74ff. MacCrimmon zählt die Lexikographische Methode und die Elimination durch Aspekte zu den Verfahren, die einen Vergleich der Alternativen mit Alternativen bezüglich einzelner Aspekte vornehmen. Vgl. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 32f.Google Scholar
  46. 166.
    Vgl. z.B. Chankong, V. / Haimes, Y. Y.: Multiobjective Decision Making: Theory and Methodology, North-Holland Series in System Science and Engineering, Vol. 8, New York u.a. 1983, S. 200 ff.Google Scholar
  47. 167.
    Vgl. Bamberg, G. / Coenenberg, A. G.: Betriebswirtschaftliche Entscheidungslehre, a.a.O., S. 50f.Google Scholar
  48. 168.
    Vgl. Chankong, V. / Haimes, Y. Y.: Multiobjective Decision Making: Theory and Methodology, g, Multiobjective g: ry gy, a.a.O., S. 205.Google Scholar
  49. 169.
    Vgl. z.B. Weber, K.: Mehrkriterielle Entscheidungen, a.a.O., S. 67ff.; Hwang/Yoon bezeichnen diese Methode als klassisches Verfahren bei menschlichen Entscheidungsfindungen, die einfach ist, aber eine gute Näherung liefert. Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 77ff.Google Scholar
  50. 170.
    Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 84 ff. Zu weiteren Verfahren vgl. z.B.: Matarazzo, B.: A Pairwise Criterion Comparison Approach: The MAPPAC and PRAGMA Methods, in: Costa, C. A. Bana e (ed.): Readings in Multiple Criteria Decision Aid, Berlin u.a. 1990. S. 253–276.Google Scholar
  51. 171.
    Vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, a.a.O., S. 171.Google Scholar
  52. 172.
    Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 92.Google Scholar
  53. 173.
    Zur Vorgehensweise vgl. ebenda, a.a.O., S. 93ff.Google Scholar
  54. 174.
    Vgl. beispielsweise Barzilai, J. / Golany, B.: Deriving Weights from Pairwise Comparison Matrices: The Additive Case, in: Operations Research Letters 9 (1990), S. 407–410. Vgl. hierzu auch die experimentell durchgeführte Analyse unterschiedlicher Methoden zur Präferenzaddition beziehungsweise Addition von Wertfunktionen: Corner, J. L. / Buchanan, J. T.: Experimental Consideration of Preference in Decision Making Under Certainty, in: Journal of Multi-Criteria Decision Analysis, Vol. 4, No. 2, June 1995, S. 107–121.Google Scholar
  55. 175.
    Vgl. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 25.Google Scholar
  56. 176.
    Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 99ff; MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 28. Eine Weiterentwicklung besteht in der nicht-linearen additiven Gewichtungsmethode. Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 103. Zu unterschiedlichen Verfahren, Präferenzen und damit Gewichte zu erfassen vgl. beispielsweise Srivastava, J. / Connolly, T. / Beach, L. R.: Do Ranks Suffice? A Comparison of Alternative Weighting Approaches in Value Elicitation, in: Organizational Behavior and Human Decision Processes, Vol. 63, No. 1, July, 1995, S. 112–116, Fischer, G. W.: Range Sensitivity of Attribute Weihts in Multiattribute Value Models, in: Organizational Behavior and Human Decision Processes, Vol. 62, No. 3, June 1995, S. 252–266.Google Scholar
  57. 177.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, a.a.O., S. 40ff.Google Scholar
  58. 178.
    Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 104ff; MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making. a.a.O.. S. 28.Google Scholar
  59. 179.
    Vgl. hierzu auch die Erläuterungen in Kapitel 2. Die oben genannten Vor- und Nachteile dieser Aggregationsmethoden bleiben bei Vorliegen von Multipersonalität bestehen oder werden eventuell noch verstärkt.Google Scholar
  60. 180.
    TOPSIS = Technique for Order Preferences by Similarity to Ideal Solution. Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making. a.a.O.. S. 128.Google Scholar
  61. 181.
    ELECTRE = ELimination and (et) Choice Translating Algorithm. Vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, a.a.O., S. 182. Dieses Verfahren zählt zu den Prävalenzverfahren beziehungsweise Verfahren, die auf der Basis von Prävalenzrelationen durchgeführt werden. Vgl. hierzu z.B. Bamberg, G. / Coenenberg, A. G.: Betriebswirtschaftliche Entscheidungslehre, a.a.O., S. 58f; Roy, B. / Vincke, P.: Multicriteria Analysis: Survey and New Directions, a.a.O., S. 210ff.; Roy, B. (Deutsche Bearbeitung und Erweiterung von H.-M. Winkels und A. Jaeger): Selektieren, Sortieren und Ordnen mit Hilfe von Prävalenzrelationen: Neue Ansätze auf dem Gebiet der Entscheidungshilfe für Multikriteria-Probleme, in: zfbf 32 (1980), S. 465–497; Roy, B.: The Outranking Approach and the Foundations of ELECTRE Methods, in: Costa, C. A. Bana e (ed.): Readings in Multiple Criteria Decision Aid, Berlin u.a. 1990, S. 155–183. Ähnlich dem ELECTRE-Verfahren, jedoch mit der Annahme einer Semiordnung der Präferenzen wird das Verfahren von Roubens durchgeführt. Vgl. hierzu Roubens, M.: Preference Relations on Actions and Criteria in Multicriteria Decision Making, in: European Journal of Operational Research 10 (1982), S. 51–55. Bezüglich der Erstellung einer Semiordnung vgl. auch Roy, B. / Vincke, P.: Relational Systems of Preference with One or More Pseudo-Criteria: Some New Consepts and Results, in: Management Science, Vol. 30, No. 11, November 1984, S. 1323–1335; Pirlot, M. / Vincke, P.: Lexicographic Aggregation of Semiorders, a.a.O. Zu den Prävalenzverfahren wird außerdem noch das PROMETHEEVerfahren gezählt. Vgl. Brans, J. P. / Mareschal, B.: The Promethee Methods for MCDM: The Promcalc, GAIA and Bankadviser Software, in: Costa, C. A. B. e. (ed.): Readings in Multiple Criteria Decision Aid, Berlin 1990, S. 217ff.; Iz, P. / Jelassi, M.: An Interactive Group Decision Aid for Multiobjective Problems, a.a.O., S. 596.Google Scholar
  62. 182.
    Vgl. Hwang. C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 128ff.Google Scholar
  63. 183.
    Vgl. Anhang 1.Google Scholar
  64. 184.
    Vgl. Winkels, H. M. / Wäscher, G.: Ein axiomatisch begründeter Ansatz zur Konstruktion von Prävalenzrelationen. in: Optimization 17 (1968) 1. S. 49–84.Google Scholar
  65. 185.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, a.a.O., S. 43ff.; Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 115ff.; Chankong, V. / Haimes, V. V.: Multiobiective Decision Making, a.a.O., S. 205ff.Google Scholar
  66. 186.
    Vgl. Roy. B. / Vincke. P.: Multicriteria Analysis: Survey and New Directions, a.a.O., S. 210.Google Scholar
  67. 187.
    Vgl. Iz, P. / Jelassi, M.: An Interactive Group Decision Aid for Multiobjective Problems, a.a.O., S. 596Google Scholar
  68. 188.
    Vgl. Ostanello, A.: Outranking Methods, in: Fandel, G. / Spronk, J. (eds.): Multiple Criteria Decision Methods and Applications, Selected Readings of the First International Summer School Acireale, Sicily, September 1983. Berlin u.a. 1985, S. 50.Google Scholar
  69. 189.
    Die ELECTRE-Verfahren können somit folgendermaßen charakterisiert werden: Vgl. Ostanello. A.: Outranking Methods. a.a.O.. Tabelle 1: S. 51.Google Scholar
  70. 190.
    Zu Vorschlägen, hier Multipersonalität einzubinden, vgl. Anhang 1.Google Scholar
  71. 191.
    Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 141ff.Google Scholar
  72. 192.
    Eine Indifferenzkurve ist hier der geometrische Ort, an dem alle Kombinationen von Attributswerten als gleich angesehen werden. Zur Definition und Konstruktion von Indifferenzkurven vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 143ff.Google Scholar
  73. 193.
    Die Teilmengen beinhalten Alternativen, die a) indifferent zu einer Referenzalternative, b) schlechter als die Referenzalternative und c) besser als die Referenzalternative sind. Vgl. ebenda.Google Scholar
  74. 194.
    Zu den folgenden Ausführungen vgl. . Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 153ff.Google Scholar
  75. 195.
    Vgl. hierzu die einfache additive Gewichtungsmethode bei Vorliegen kardinaler Informationen hinsichtlich der Attribute. S. 63.Google Scholar
  76. 196.
    LINMAP=LINeares MAPping. Zum Verfahren siehe z.B. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 154ff.Google Scholar
  77. 197.
    Vgl. ebenda, S.176ff.Google Scholar
  78. 198.
    Zu den räumlichen Näherungsverfahren gehören weiterhin die Erstellung einer Indifferenzkarte und Graphische Überlagerungen. Vgl. hierzu MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 35ff.Google Scholar
  79. 199.
    Vgl. Hwang, C. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 191. Zur Darstellung und Durchführung von MDS-Verfahren vgl. Green, P. E. / Tull, D. S.: Methoden und Techniken der Marketingforschung, a.a.O., S. 254ff; Schuchard-Ficher, Chr. et. al.: Multivariate Analysemethoden, a.a.O., S. 269f.Google Scholar
  80. 200.
    Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 176ff; MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 35.Google Scholar
  81. 201.
    Leicht modifizierte Abbildung von Hwang/Yoon. Vgl. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., Fig. 1.1., S. 9.Google Scholar
  82. 202.
    Zur Definition und Abgrenzung vgl. Tabelle 2 und die dazugehörigen Ausführungen. Im folgenden wird auch hier in der Regel die Abkürzung MODM für Multiple Objective Decision Making herangezogen.Google Scholar
  83. 203.
    Vgl. hierzu z.B. die unsystematisiert aufgeführten Verfahren bei Zionts, S.: Multiple Criteria Mathematical Programming: An Update Overview and Several Approaches, a.a.O., S. 7ff. oder derselbe: Multiple Criteria Mathematical Programming: An Overview and Several Approaches, in: Fandel, G. / Spronk, J. (Hrsg.): Multiple Criteria Decision Methods and Applications, Selected Readings of the First International Summer School Acireale. Sicily. September 1983. Berlin u.a. 1985. S. 85ff.Google Scholar
  84. 204.
    Unter den Anforderungen an eine Klassifikation wird in diesem Zusammenhang verstanden, daß eine Systematisierung dazu beitragen soll, die Verwendbarkeit der Verfahren bei multipersonalen Entscheidungen untersuchen zu können.Google Scholar
  85. 205.
    Zu der nachfolgenden Differenzierung in Verfahren mit keiner, a priori, progressive und a posteriori Präferenzermittlung vgl. beispielsweise Benayoun, R. / Larichev, O. I. / de Montgolfier, J. / Tergny, J.: Linear Programming with Multiple Objective Functions. The Method of Constraints, in: Automation and Remote Control, 32, No. 8, 1971, S. 1257.Google Scholar
  86. 206.
    Hierzu gehört ebenfalls die Annahme, daß die Ziele und eventuellen Zielpräferenzen von dem Entscheidungsträger definiert werden. Auf die Möglichkeit, daß die Alternativen innerhalb eines Vergleiches selber die Gewichtung der Kriterien bestimmen beziehungsweise beeinflussen, soli hier nicht eingegangen werden, da das Thema der vorliegenden Arbeit explizit auf die Betrachtung der Entscheidungsträger abzielt. Zu einem möglichen Verfahren der Zielkriterienfestlegung durch die Alternativen vgl. Doyle, J. R.: Multiattribute Choice for the Lazy Decision Maker, a.a.O., S. 87–100.Google Scholar
  87. 207.
    Unter Zielordnungen sollen hier alle möglichen Angaben von Präferenzen verstanden werden, unabhängig davon, ob es sich lediglich um Zielhierarchien, einer lexikographischen Ordnung oder um die Angabe exakter Zielgewichte handelt.Google Scholar
  88. 208.
    In Anlehnung an Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., Fig. S. 1 “A taxonomy of methods for multiple objective decision making”, S. 209. v. Nitzsch übernimmt diese Klassifizierung in leicht modifizierter Form, da er die MCDM-Verfahren nicht in Verfahren des MADM und des MODM unterteilt. Seine erste Systematisierung erfolgt aufgrund der mathematischen Vorgehensweise in Prävalenzverfahren und in Multiple Objective Mathematical Programming (MOMP), wobei er letztere nach dem Zeitpunkt der Präferenzermittlung unterteilt in Verfahren mit Optimierung vor der Präferenzermittlung, in Verfahren, die eine progressive Präferenzermittlung beinhalten und ein Verfahren, die nach einer Präferenzermittlung herangezogen werden. Vgl. hierzu Nitzsch, R. v.: Entscheidung bei Zielkonflikten, a.a.O., S. 20ff. Ähnlich Iz, P. / Jelassi, M.: An Interactive Group Decision Aid for Multiobjective Problems: An Empirical Assessment, in: Omega, International Journal of Management Science, Vol. 18, No. 6, 1990, S. 596f.209209 Vgl. hierzu die Ausführungen auf Seite 59ff. dieser Arbeit.210210 Dieser Systematisierungsansatz wurde übernommen von MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 24.211211 Es handelt sich demnach um Methoden, die ausschließlich bei wiederholbaren beziehungsweise wiederholten Entscheidungen herangezogen werden können. Im wesentlichen sind hier die Verfahren der Linearen Regression, der Varianzanalyse sowie der Quasi-Linearen Regression zu nennen. Vgl. z.B. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, in: Cochrane, J. L. / Zeleny, M. (Hrsg.): Multiple Criteria Decision Making, Columbia. South Carolina 1973, S. 20ff-212212 Hierzu gehören die Verfahren der Trade-offs, Single-additive Weighting, Hierarchical-additive Weighting und der Ouasi-additive Weighting. Zur Darstellung siehe S. 76f.213213 Vgl. hierzu insbesondere die Ausführungen über Bandbreitensensitivität bei der Zielgewichtung Nitzsch, R. v. / Weber, M.: Bandbreiten-Effekte bei der Bestimmung von Zielgewichten, a.a.O., S. 971–986. Zur Beschreibung von Tradeoff-Informationen und zur anschließenden Bildung von Indifferenzkurven vgl. z.B. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision, a.a.O., S. 141ff. Zur Diskussion der Inkonsistenz der Angaben durch den Entscheidungsträger vgl. beispielsweise Delquié, P.: Inconsistent Trade-offs Between Attributes: New Evidence in Preference Assessment Biases, in: Management Science, Vol. 39, No. 1 1, November 1993, S. 1382–1395.214214 Verfahren, die hierauf aufbauen, sind das Maximin- und das Maximax-Prinzip. Vgl. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 22f. Siehe auch Velichenko’s MinimaxPrinzip bei Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, a.a.O., S. 1 151.215215 Vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications. a.a.O.. S. 140ff.216216 Vgl. Zeleny, M.: Multiple Criteria Decision Making, a.a.O., S. 362f.; Chankong, V. / Haimes, Y. Y.: Multiobjective Decision Making, a.a.O., S. 159ff. Zur Vorgehensweise des Verfahrens vgl. ebenda, S. 351 ff.; Goicoechea u.a. zählen dieses Verfahren im Gegensatz zu den beiden vorher genannten Quellen zu den a priori Methoden. Vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, a.a.O., S. 140ff. Trade-offs beziehungsweise die Austauschverhältnisse zwischen den Zielen und ihren Zielerreichungsgraden werden in den unterschiedlichsten Verfahren herangezogen. So werden explizite Austauschraten bei progressiven MODMMethoden, wie z.B. Geoffrion/Dyer/Feinberg oder Zionts/Wallenius, herangezogen. Implizite Trade-offs finden sich ebenfalls in progressiven MODM-Verfahren, wie beispielsweise innerhalb der STEM- oder der Methode des Displaced Ideal, aber auch bei a posteriori — Verfahren. Vgl. hierzu die entsprechenden beschriebenen Verfahren.217217 Vgl. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 24.218218 Vgl. Chankong, V. / Haimes, Y. Y.: Multiobjective Decision Making: Theory and Methodology, g, j g: ry gy, a.a.O., S. 351ff.219219 Zum Ablauf des Verfahrens und zu speziellen Erweiterungen hierzu vgl. ebenda, S. 359ff.220220 Vgl. ebenda. S. 363.221221 Dieses laßßt sich insbesondere dadurch begründen, daß die Ausschlußverfahren in der Regel für diskrete Entscheidungsprobleme entwickelt wurden. Bei den MODM-Verfahren handelt es sich jedoch per definitionem um stetige Entscheidungsprobleme, die dementsprechend über eine unendliche Alternativenmenge verfügen. Vgl. hierzu auch die Ausführungen zu den MADM-Verfahren Kapitel 3.1.1 sowie die Abgrenzung von MODM- und MADM-Verfahren in Tabelle 2.222222 Ausgehend von den Eigenschaften der MODM-Probleme, daß Attribute von Alternativen als Maximierung oder Minimierung ausgedrückt werden, daß es demnach hinsichtlich der Ziele Vorstellungen des Entscheidungsträgers gibt, daß eventuell Präferenzinformationen bezüglich der Kriterien vorliegen und daß Informationen über die Beziehung zwischen den Attributen und Kriterien vorhanden sind, lassen sich Probleme bestimmen, die auch gleichzeitig MADM-Probleme darstellen. Dieses ist dann der Fall, wenn die Beziehung zwischen den Attributen und den Kriterien eine 1:1-Beziehung ist. Hierdurch 1äßt sich erklären, daß viele MADM-Verfahren ebenfalls als Methoden zur Lösung von MODM-Problemen genannt werden. Hierzu zählen beispielsweise die räumlichen Näherungsmethoden, wie die Multidimensionale Skalierung und Graphical Overlays. Desweiteren können Verfahren herangezogen werden, die auf der Basis von Nutzenwerten aufbauen, wie die Nutzwertanalyse oder Scoringverfahren mit Austauschratenbestimmung. Auch sequentielle Ausschlußmethoden sind verwendbar. Aus diesem Grunde wird hier auf eine erneute Darstellung verzichtet. Zur Multidimensionalen Skalierung vgl. beispielsweise Reiter, G.: Nichtmetrische mehrdimensionale Skalierung als Instrument zur Lösung betrieblicher Entscheidungsprobleme, Betriebswirtschaftliche Forschungsergebnisse, Band 99, Berlin 1991, S. 177ff., insbesondere S. 21 1 ff.; Schreüder, W. A. / van Dyk, E.: A Multidimensional Scaling Model for Qualitative Pair Wise Comparisons, in: Lockett, A. G. / Islei, G. (eds.): Improving Decision Making in Organisations, Proceedings of the Eighth International Conference on Multiple Criteria Decision Making, Held at Manchester Business School, University of Manchester, UK, August 21st-26th, 1988, Lecture Notes in Economics and Mathematical Systems, Vol. 335, Berlin u.a. 1989, S. 68ff.; Schuchard-Ficher, Chr. et.al.: Multivariate Analysemethoden, a.a.O., S. 269f. Zu den Graphical Overlays vgl. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 35ff. Zur Nutzwertanalyse vgl. beispielsweise Nitzsch, R. von: Entscheidungen bei Zielkonflikten, a.a.O. Vgl. weiter zur Nutzwertanalyse und insbesondere des Analytic Hierarchy Process (AHP) beispielsweise Schneeweiß, C.: Der Analytic Hierarchy Process als spezielle Nutzwertanalyse, in: Fandel, G. / Gehring, H. (Hrsg.): Operations Research: Beiträge zur quantitativen Wirtschaftsforschung; Tomas Gal zum 65. Geburtstag; Berlin u.a. 1991, S. 183ff.; Meier, K.: Modellbildung bei Mehrfachzielen, a.a.O., S. 30f.; Weber, K.: Mehrkriterielle Entscheidungen, a.a.O., S. 73ff. Zur Austauschratenbestimmung vgl. Bamberg, G. / Coenenberg, A. G.: Betriebswirtschaftliche Entscheidungslehre, a.a.O., S. 45ff. Zu den sequentiellen Ausschlußmethoden vgl. MacCrimmon, K. R.: An Overview of Multiple Ohiective Decision Making. a.a.O.. S. 30ff.223223 Vgl. z.B. Reiter, G.: Nichtmetrische mehrdimensionale Skalierung als Instrument zur Lösung betrieblicher Entscheidungsprobleme, a.a.O., S. 21 1 ff. Vgl. zu Literaturverweisen auch die Angaben auf S. 65 dieser Arbeit.224224 Vgl. Nitzsch, R. von: Entscheidungen bei Zielkonflikten, a.a.O., S. 16f.225225 Die hier dargestellten Kriterien orientieren sich an den Klassifizierungsansätzen bei Verfahren zu multikriteriellen Entscheidungssituationen.226226 In der Regel wird nachfolgend die Kurzform MOMP verwendet.227227 Nachfolgend seien einige Übersichtsveröffentlichungen zu MCDM- und insbesondere MODM- Verfahren aufgeführt: Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, a.a.O., S. 1 147–1 165; Cohon, J. L. / Marks, D. H.: A Review and Evaluation of Multiobjective Programming Techniques, in: Water Resources Research, 1 1, 7 (1975), S. 208–220; Dauer, J. P. / Stadler, W.: A Survey of Vector Optimization in Infinite-Dimensional Spaces, Part 2, in: Journal of Optimization Theory and Applications, 51, 2 (November 1986), S. 205–241; Evans, G. W.: An Overview of Techniques for Solving Multiobjective Mathematical Programs, in: Management Science, 30, 11 (November 1984), S. 1268–1282; Larichev, O. I.: Analytical Survey of Procedures for Solving Multicriteria Mathematical Programming Problems (MMPP), in: Toward Interactive and Intelligent Decision Support Systems, Seventh International Conference of Multiple Criteria Decision Making, 18–22 August 1986, Kyoto Matsugasaki Kaikan, Kyoto, Japan 1986, S. 400–414; Lieberman, E. R.: Multi-Objecitve Programming in the USSR: A Methodological Assessment of the Development and State of Soviet Research, Ph.D. dissertation, The Johns Hopkins University, Balimore, MD, 1988; Lieberman, E. R.: MultiObjective Programming in the USSR, Academic Press, New York 1991; MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 18–44; Stadler, W.: A Survey of Multicriteria Optimization of the Vector Maximum Problem, Part 1. 1776–1960, in: Journal of Optimization Theory and Applications, 29, 1 (1979), S. 1–52; Stadler, W.: A Comprehensive Bibliography on Multicriteria Decision Making, in: MCDM: Past Decade and Future Trends, FAI Press, Greenwich, CT, 1984, S. 223–328.228228 Vgl. Nitzsch, R. von: Entscheidungen bei Zielkonflikten, a.a.O., S. 16ff.229229 Vgl. Vincke, P.: Analysis of Multicriteria Decision Aid in Europe, in: European Journal of Operational Research 25 (1986), S. 165. Zu einem neueren Verfahren, das auf einer interaktiven Approximation der Nutzenfunktion basiert vgl. Arbel, A. / Oren, S. S.: Generating Interior Search Directions for Multiobjective Linear Programming, in: Journal of Multi-Criteria Decision Analysis, Vol. 2, No. 2, August 1993, S. 73–86. Korhonen / Narula versuchen zusätzlich Evolutionsansätze einzubeziehen. Vgl. Korhonen, P. J. / Narula, S. C.: An Evolutionary Approach to Support Decision Making With Linear Decision Models, in: Journal of Multi-Criteria Decision Analysis, Vol. 2, No. 2, August 1993, S. 111–120. Zur Anwendung von interaktiven MOLP-Verfahren auf Computern vgl. Clfmaco, J. N. / Antunes, C. H.: A Comparison of Microcomputer Implemented Interactive MOLP Methods Based on a Case Study, in: Costa, C. A. Bana e (ed.): Readings in Multiple Criteria Decision Aid, Berlin u.a. 1990, S. 445–470. Einen Überblick über interaktive MOMP-Verfahren liefern: Larichev, C. I. / Nikiforov, A. D.: Analytical Survey of Procedures for Solving Multicriteria Mathematical Programming Problems (MMPP), in: Toward Interactive and Intelligent Decision Support Systems, Seventh International Conference of Multiple Criteria Decision Making 1986, Kyoto, Matzugasaki Kaikan, Kyoto, Japan 1986, S. 400–414.230230 Vgl. hierzu Seite 32ff. dieser Arbeit.231231 Vgl. hierzu die Definitionen bezüglich des Begriffes Lösung auf Seite 41f. dieser Arbeit.232232 Zu den unterschiedlichen Klassifizierungsansätzen siehe beispielsweise Iz, P. / Jelassi, M.: An Interactive Group Decision Aid for Multiobjective Problems, a.a.O., S. 596. Steuer, der in Multiple Objective Lineare Programming, Goal Programming, Multiple Objective Fractional Programming und interaktive Methoden unterscheidet. Vgl. Steuer, R. E.: Multiple Criteria Optimization, a.a.O., S. 99ff. Bei ihm sind auch entsprechende Anwendungsbeispiele angegeben. Desweiteren vgl. ebenda, S. 484ff. Roy unterscheidet hingegen zwischen unterschiedlichen Lösungsansätzen. Hierzu gehört die Aggregation zu einer einzelnen Funktion, die die komplette Präferenzordnung angibt. Desweiteren nennt er die Definition der Präferenzen im Zusammenhang mit der Exploration der Menge möglicher Lösungen. Vgl. Roy, B.: Problems and Methods with Multiple Objective Functions, in: Mathematical Programming, 1, No. 2, 1971, S. 240ff. Zu einer Definition von MOMP-Problemen vgl. auch Vincke, P.: Analysis of Multicriteria Decision Aid in Europe, a.a.O., S. 161; Benayoun, R. / Larichev, O. I. / de Montgolfier, J. / Tergny, J.: Linear Programming with Multiple Objective Functions. The Method of Constraints, a.a.O., S. 1257; Romero, C.: Handbook of Critical Issues in Goal Programming, a.a.O., S. 3ff. Als wichtigste Ansätze beziehungsweise Lösungsansätze nennt er die Gewichtungsmethode, wobei eine Ersatzzielfunktion durch Addition der gewichteten Einzelziele erstellt wird, die Constraint-Methode, bei der immer ein Ziel optimiert wird bei Beibehaltung der anderen Zielfunktionen als Nebenbedingung, und die Methode des multikriteriellen Simplex. Zu Verfahren des Goalprogramming als weiterführende Methoden mit Artikulation von Präferenzen vgl. z.B. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, a.a.O., S. 98ff.; Zionts, S.: Multiple Criteria Mathematical Programming: An Overview and Several Approaches, a.a.O., S. 103ff.; Zeleny, M.: Multiple Criteria Decision Making, a.a.O., S. 280ff.; Reiter, G.: Nichtmetrische mehrdimensionale Skalierung als Instrument zur Lösung betrieblicher Entscheidungsprobleme, a.a.O., S. 203ff.; Lee, S. M.: Goal Programming for Decision Analysis, Philadelphia 1972. Auf Anwendungen des Goalprogramming verweisen z.B. Fisk, J. C.: A Goal Programming Model for Output Planning, in: Decision Sciences, Vol. 10, 1979, S. 593–603; Goodman, D. A.: A Goal Programming Approach to Aggregate Planning of Production and Work Force, in: Management Science, Vol. 20, No. 12, August 1974, S. 1569–1575. Einen Überblick üüber frühere Veröffentlichungen bietet Lin, wobei das Goalprogramming als Erweiterung der Linearen Programmierung gesehen wird. Vgl. Lin, W. T.: A Survey of Goal Programming Applications, in: OMEGA, The International Journal of Management Science, Vol. 8 (1979), No. 1, S. 1 15–122; Romero, C.: A Survey of Generalized Goal Programming (1970–1982), in: European Journal of Operational Research 25 (1986), S. 183–191; Kornbluth, J. S. H.: A Survey of Goal Programming, in: OMEGA, The International Journal of Management Science, Vol. 1 (1973), No. 2, S. 193–205; Lawrence, K. D. I Burbridge, J. J.: A Multiple Goal Linear Programming Model for Coordinated Production and Logistics Planning, in: International Journal of Production Research, 1976, Vol. 14, No. 2, S. 215–222. Das Goalprogramming wird aufgrund seiner leichten Durchschaubarkeit und Anwendbarkeit häufig in der Praxis herangezogen. Vgl. hierzu Bamberg, G. / Coenenberg, A. G.: Betriebswirtschaftliche Entscheidungslehre, a.a.O., S. 53f. sowie Zionts, S.: Multiple Criteria Mathematical Programming: An Overview and Several Approaches, a.a.O., S. 105. Der Hauptkritikpunkt am Verfahren des Goalprogramming, daß die gefundene Lösung nicht zwangsläufig effizient ist, kann mit Hilfe einer weiteren Methode aufgehoben werden. Hannan ‘s Procedure ist ein Verfahren, um die Menge aller GP-effizienten Lösungen zu ermitteln, die die zuvor gefundene nicht pareto-effiziente Ausgangslösung dominieren. Somit werden die Ziele des Goalprogramming zu Kriterien innerhalb eines Multiple Objective Programmes. Vgl. hierzu Romero, C.: Handbook of Critical Issues in Goal Programming, a.a.O., S. 23 sowie Hannan, E. L.: Nondominance in Goal Programming, INFOR, in: Canadian Journal of Operational Research and Information Processing, 18, 1980, S. 300–309. Ein weiterführender Ansatz besteht in dem Lexikographischen Goalprogramming, wobei allerdings nicht mehr auf die Anwendung des Simplex-Algorithmus zurückgegriffen werden kann. Vgl. Romero, C.: Handbook of Critical Issues in Goal Programming, a.a.O., S. 3ff. Ebenso wurde das Goalprogramming auf fraktionale Ziele angewandt. Vgl. hierzu Hannan, E. L.: On „An Interpretation of Fractional Objectives in Goal Programming as Related to Paters by Averbuch et.al., and Hannan”, in: Management Science, Vol. 27, No. 7, July 1981, S. 847–848; Choo, E. U. / Atkins, D. R.: Connectedness in Multiple Linear Fractional Programming, in: Management Science, Vol. 29, No. 2, February 1983, S. 250ff. Vgl. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 33ff. Zu einer Übersicht der Charakteristika von Mathematischen Programmierungsmodellen vgl. Aggarwal, A. K. / Clayton, E. R. / Rakes, T. R. / Baker, R.: A Problem Identification Taxonomy for Classification and Automated Formulation of Multiple Objective Linear Programming Models, in: Annals of Operations Research 38 (1992), S. 1–16, insbesondere Fig. 1. Classification of mathematical programming models, S. 6Google Scholar
  89. 233.
    Vgl. S. 56 dieser ArbeitGoogle Scholar
  90. 234.
    Roy merkt hierzu an, daß es in der Praxis nicht gerade leicht sei, Präferenzen anzugeben. Hauschildt ist gar der Ansicht, in der Regel ließen sich nicht einmal Zielrangordnungen aufstellen. Vgl. Roy, B.: Problems and Methods with Multiple Objective Functions, in: Mathematical Programming, 1, No. 2, 1971, S. 246; Hauschildt, J.: Entscheidungsziele, a.a.O., S. 53Google Scholar
  91. 235.
    An dieser Stelle wird nicht explizit darauf eingegangen, auf welche Weise die zu berücksichtigenden Präferenzen ermittelt werden. Bei der Ermittlung von Präferenzen lassen sich drei unterschiedliche Arten unterscheiden. Zum einen können die Präferenzen aufgrund früherer Wahlen geschlossen werden, indem beispielsweise eine Regressions- oder Varianzanalyse durchgeführt wird. Zweitens kann man durch direkte Befragung des Entscheidungsträgers auf die Präferenzen schließen. Hier ist zu unterscheiden, ob die Alternativen hinsichtlich der gesamten Attribute oder lediglich hinsichtlich spezifischer, ausgewählter Eigenschaften beziehungsweise Kriterien beurteilt werden. Vgl. hierzu z.B. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making, a.a.O., S. 25ff. oder auch Zeleny, M.: Multiple Criteria Decision Making, a.a.O., S. 446ffGoogle Scholar
  92. 236.
    Vgl. zu diesen Ausführungen die entsprechend zu den Klassifizierungskriterien der MOMP-Verfahren genannten Autoren in der Fußnote 232 dieser ArbeitGoogle Scholar
  93. 237.
    Vgl. hierzu und zu den folgenden Ausführungen Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, a.a.O., S. 1 149Google Scholar
  94. 238.
    Hierzu erfolgte auch der größte Teil der Veröffentlichungen zu MOMP bis zu den 80er Jahren. Vgl. Vincke, P.: Analysis of Multicriteria Decision Aid in Europe, a.a.O., S. 185. Weiterführende Ansätze zur Bestimmung von effizienten Mengen wurden im Bereich des linear fraktionalen und nicht-linearen MOMP erarbeitet. Vgl. ebenda, S. 162. Eine weitere Entwicklung berücksichtigt das Vorliegen unexakter Daten. Vgl. hierzu Stancu-Minasian, I. M. / Tigan, St.: Multiobjective Mathematical Programming with Inexact Data, in: Slowinski, R. / Teghem, J. (eds.): Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, Dordrecht u.a. 1990, S. 395–418; Stewart, T. J.: Simplified Approaches for Multicriteria Decision Making Under Uncertainty, in: Journal of Multiple-Criteria Decision Analysis, Vol. 4, No. 4, December 1995, S. 246–258Google Scholar
  95. 239.
    Zum Basiskonzept beziehungsweise zur Aufstellung einer Präferenzstruktur oder einer Bedauernsfunktion vgl. Shi, Y.: Goal Setting and Compromise Solutions, in: Karpak, B. / Zionts, S. (eds.): Multiple Criteria Decision Making and Risk Analysis Using Microcomputers, Berlin / Heidelberg 1989, S. 181ff.; Steuer, R. E.: Multiple Criteria Optimization: Theory, Computation, and Application. a.a.O., S. 46fGoogle Scholar
  96. 240.
    Vgl. Shi, Y.: Goal Setting and Compromise Solutions, a.a.O., S. 167Google Scholar
  97. 241.
    Die Einschränkung auf die wichtigsten Verfahren geschieht aus mehreren Gründen. Zum einen besteht das Ziel dieser Arbeit nicht darin, einen vollständigen Überblick über alle bestehenden Verfahren zu geben. Zum anderen unterscheiden sich viele Verfahren nur hinsichtlich geringfügiger Einzelbestandteile, so daß eine explizite Darstellung aller Methoden nur i n sehr begrenztem Maße zu einem Erkenntnisfortschritt führen würde. Es wird bei den weiteren Ausführungen jeweils nur auf die entsprechende Literatur verwiesenGoogle Scholar
  98. 242.
    Vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, a.a.O., S. 1152; derselbe: Multi-Objective Programming in the USSR, a.a.O., S. 47ffGoogle Scholar
  99. 243.
    Vgl. Ijiri, Y.: Management Goals and Accounting for Control. Amsterdam 1965, S. 34 ff. Eine Erweiterung erfolgte dahingehend, daß die Ziele einer Rangfolge unterzogen werden können.Google Scholar
  100. 243a.
    Vgl. hierzu und zur Zerlegung einer Gesamtzielfunktion in Teilsummen für die einzelnen Prioritäten z.B.: Lee, S. M.: Goal Programming for Decision Analysis, a.a.O., S. 97ff; derselbe: Decision Analysis through Goal Programming, in: Decision Science 2 (1971), S. 172–180 oder derselbe: Goal Programming for Decision Analysis of Multiple Objectives, in: Sloan Management Review, 14 (1972/73), S. 11–24.Google Scholar
  101. 247.
    Zur einfachen additiven Gewichtungsmethode vgl. z.B. Hwang, C.-L. / Yoon, K.: Multiple Attribute Decision Making, a.a.O., S. 99ff. Zu Beurteilungen von Nutzenfunktionen vgl. beispielsweise Daniels / Keller, die sowohl auf den Neumann-Morgenstern-Nutzen als auf den Lotterie-Nutzen eingehen. Es sei nur auf die entsprechende Literatur verwiesen. Vgl. Daniels, R. L. / Keller, L. R.: Choice-Based Assessment of Utility Functions, in: Organizational Behavior and Human Decision Processes, 52, 1992, S. 524–543.CrossRefGoogle Scholar
  102. 248.
    Vgl. zu den unterschiedlichen Normierungsarten beispielsweise Romero, C.: Handbook of Critical Issues in Goal Programming, , in: Organizational Behavior and Human Decision Processes, 52, 1992, S. 37ff, insbesondere S. 40f.Google Scholar
  103. 249.
    Vgl. Vanderpooten, D.: The Construction of Prescriptions in Outranking Methods, in: Costa, C., A. Banae (ed.): Readings in Multiple Criteria Decision Aid. Berlin u.a. 1990. S. 7.Google Scholar
  104. 250.
    Diese Vorgehensweise kann analog des Laplace-Verfahrens zur Lösung des Grundmodells der Entscheidung bei Nichtvorliegen von Eintrittswahrscheinlichkeiten angesehen werden. Dort wird davon ausgegangen, daß es keinen hinreichenden Grund gibt, daß diese möglichen Konsequenzen nicht mit der gleichen Wahrscheinlichkeit eintreten. Vgl. zum Laplace-Verfahren oder des Verfahrens des unzureichenden Grundes beispielsweise Kahle, E.: Betriebliche Entscheidungen, , in: Costa, C., A. Banae (ed.): Readings in Multiple Criteria Decision Aid. Berlin u.a. 1990, S. 131;Google Scholar
  105. 250a.
    Bamberg, G. / Coenenberg, A. G.: Betriebswirtschaftliche Entscheidungslehre, , in: Costa, C., A. Banae (ed.): Readings in Multiple Criteria Decision Aid. Berlin u.a. 1990, S. 109.Google Scholar
  106. 251.
    Bei Berücksichtigung der Gruppe entsteht somit keine Multipersonalität innerhalb der Problemlösungsphase, sondern bereits in der Phase der Problemformulierung. Vgl. Munda, G.: Multiple-Criteria Decision Aid: Some Epistemological Considerations, in: Journal of Multi-Criteria Decision Analysis, Vol. 2, No. 1, April 1993, S. 53. Zu einem Ansatz des Gruppeneinbezugs innerhalb der Problemformulierungsphase durch Aggregation der Präferenzen vgl. D’Alessandro, P.: Group Decision as a Twice Multicriteria Optimum Problem, in: Journal of Multi-Criteria Decision Analysis, S. 167–170.CrossRefGoogle Scholar
  107. 252.
    Vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, 1993, S. 1152ff.Google Scholar
  108. 253.
    Vgl. Bamberg, G. / Coenenberg, A. G.: Betriebswirtschaftliche Entscheidungslehre, 1993, S. 57, Literaturhinweise: S. 58;Google Scholar
  109. 253a.
    Klein, G.: An Interactive Aid for Descriptive Multiattribute Problems, in: Naval Research Logistics, Vol. 37, 1990, S. 953–959.CrossRefGoogle Scholar
  110. 253b.
    Weitere Literaturverweise finden sich beispielsweise in: Isermann, H.: Optimierung bei mehrfacher Zielsetzung, in: Gal, T. (Hrsg.): Grundlagen des Operations Research, Band 1–3, 2. Auflage, Berlin u.a. 1989, S. 472. Zu einem weiteren Verfahren, auf das hier nicht weiter eingegangen werden soll, vgl. Kim, S. H. / Gal, T.: A New Interactive Algorithm for Multicriteria Linear Programming Using Maximally Changeable Dominance Cone, Diskussionsbeiträge des FB Wirtschaftswissenschaften der Fernuniversität Hagen, Nr. 156, Hagen 1990. Eine Weiterentwicklung besteht durch den Einbezug unscharfer Daten.Google Scholar
  111. 253c.
    Vgl. hierzu beispielsweise Sakawa, M. / Yano, H.: Interactive Decision Making for Multiobjective Programming Problems with Fuzzy Parameters, in: Slowinski, R. / Teghem, J. (eds.): Stochastic Versus Fuzzy Approaches to Multiobjective Programming under Uncertainty, Dordrecht u.a. 1990, S. 191–228; dieselben: An Interactive Method for Multiobjective Nonlinear Programming Problems with Fuzzy Parameters, in: Trappl, R. (ed.): Cybernetics and Systems 1986, S. 607–614;CrossRefGoogle Scholar
  112. 253d.
    Klein, G. / Moskowitz, H. / Ravindran, A.: Interactive Multiobjective Optimization under Uncertainty, in: Management Science, Vol. 36, No. 1, January 1990, S. 58–75;CrossRefGoogle Scholar
  113. 253e.
    Wang, H.-F.: A Multiobjective Mathematical Programming Problem with Fuzzy Relation Constraints, in: Journal of MultiCriteria Decision Analysis, Vol. 4, No. 1, March 1995, S. 23–36. Ein weiterer interaktiver Ansatz wird durch Marcotte / Soland geliefert. Vgl. Marcotte, O. / Soland, R. M.: An Interactive Branch-and-Bound Algorithm for Multiple Criteria Optimization, in: Management Science, 32, S. 61–75.CrossRefGoogle Scholar
  114. 254.
    Vgl. Zeleny, M.: Multiple Criteria Decision Making, 1995, S. 360. Die Präferenzermittlung, die für die unterschiedlichen Verfahren benötigt wird, kann in differenzierter Weise erfolgen. Vgl. hierzu die Ausführungen zu der Präferenzermittlung sowie den Austauschraten beziehungsweise Trade-Offs auf Seite 69f. dieser Arbeit.Google Scholar
  115. 255.
    Vgl. Chankong, V. / Haimes, Y. Y.: Multiobjective Decision Making: Theory and Methodology, 1995, S. 292;Google Scholar
  116. 255a.
    Jacquet-Lagrèze, E.: Basic Concepts for Multicriteria Decision Support, 1995, S. 24;Google Scholar
  117. 255b.
    Zeleny, M.: Multiple Criteria Decision Making, 1995, S. 360ff;Google Scholar
  118. 255c.
    Isermann, H.: Optimierung bei mehrfacher Zielsetzung, 1995, S. 470ff.;Google Scholar
  119. 255d.
    Vanderpooten, D.: The Construction of Prescriptions in Outranking Methods, 1995, S. 184ff.Google Scholar
  120. 255e.
    Eine Kurzübersicht findet sich z.B. bei Steuer u.a. Vgl. Steuer, R. E. / Gardiner, L. R.: Interactive Multiple Objective Programming: Concepts, Current Status, and Future Directions, in: Costa, C., A. Banae (ed.): Readings in Multiple Criteria Decision Aid, Berlin u.a. 1990, S. 413–444.CrossRefGoogle Scholar
  121. 256.
    Vgl. Roy, B. / Vincke, P.: Multicriteria Analysis: Survey and New Directions, S. 212; Vincke, P.: Analysis of Multicriteria Decision Aid in Europe, 1995, S. 162. Die Vorgehensweise einer allgemeinen interaktiven Methode wird anhand eines Flußdiagramms von Rov/Vincke dargestellt Vgl. ebenda, S. 216.Google Scholar
  122. 257.
    Vgl. Vincke, P.: Analysis of Multicriteria Decision Aid in Europe, 1995, S. 163.Google Scholar
  123. 258.
    Vgl. Chankong, V. / Haimes, Y. Y.: Multiobjective Decision Making: Theory and Methodology,1995, S. 292.Google Scholar
  124. 259.
    Die nächsten Ausführungen finden sich bei Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1995, S. 217.Google Scholar
  125. 260.
    Zu den Austauschraten von Zielbeiträgen beziehungsweise Trade-offs vgl. beispielsweise Chankong, V. / Haimes, Y. Y.: Multiobjective Decision Making: Theory and Methodology, 1995, S. 159ff.Google Scholar
  126. 261.
    Vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1995, S. 217. Eine weitere Möglichkeit besteht in der Ermittlung von TradeOff-Compromise-Mengen, wobei alle nicht-dominierten Kompromißlösungen eines MOLP gefunden werden sollen.Google Scholar
  127. 261a.
    Vgl. Ecker, J. G. / Shoemaker, N. E.: Multiple Objective Linear Programming and the Tradeoff-Compromise Set, in: Fandel, G. / Gal, T. (eds.): Multiple Criteria Decision Making — Theory and Application, Proceedings, Hagen/Königswinter, West Germany, 1979, Lecture Notes in Economics and Mathematical Systems, Vol. 177, Berlin u.a. 1980, S. 60ff.Google Scholar
  128. 262.
    Eine Näherung von nicht-linearen Problemen an die Lineare Programmierung stellt Stewart vor, wobei er sich auf diskrete, auf expliziten Wertfunktionsmodellen basierende Entscheidungsprobleme beschränkt. Vgl. Stewart, T. J.: Use of Piecewise Linear Value Functions in Interactive Multicriteria Decision Support: A Monte Carlo Study, in: Management Science, Vol. 39, No. 1 1, November 1993, S. 1369–1381.CrossRefGoogle Scholar
  129. 263.
    Vgl. Zeleny, M.: Multiple Criteria Decision Making, 1993, S. 366ff.,Google Scholar
  130. 263a.
    Delgado, M. / Verdegay, J. L. / Vila, M. A.: A Possibilistic Approach for Multiobjective Programming Problems, 1993, S. 237.Google Scholar
  131. 263b.
    Zum Goalprogramming vgl. auch Kinory, S.: Goal Programming and Managerial Decision Making, in: Management Science, No. 2, 1978, S. 101–109.Google Scholar
  132. 264.
    Vgl. Bamberg, G. / Coenenberg, A. G.: Betriebswirtschaftliche Entscheidungslehre, 1978, S. 57,Google Scholar
  133. 264a.
    Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1978, S. 224ff.;Google Scholar
  134. 264b.
    White, D. J.: Optimality and Efficiency, Chichester u.a. 1982, S. 197ff.;Google Scholar
  135. 264c.
    Geoffrion, A. M. / Dyer, J. S. / Feinberg, A.: An Interactive Approach for Multicriterion Optimization with an Application to the Operation of an Academic Department, in: Management Science 19, 1972, S. 357–368.CrossRefGoogle Scholar
  136. 264d.
    Vgl. auch z.B. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, 1972, S. 122ff.,Google Scholar
  137. 264e.
    Zeleny, M.: Multiple Criteria Decision Making, 1972, S. 361f.;Google Scholar
  138. 264f.
    Steuer, R. E.: Multiple Criteria Optimization, 1972, S. 367ff.,Google Scholar
  139. 264g.
    Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1972, S. 224ff.Google Scholar
  140. 264i.
    Zu Computertests dieses Verfahrens vgl. Steuer, R. / Gardiner, L.: On the Computational Testing of Procedures for Interactive Multiple Objective Linear Programming, in: Fandel, G. / Gehring, H. (Hrsg.): Operations Research: Beiträge zur quantitativen Wirtschaftsforschung; Tomas Gal zum 65. Geburtstag, Berlin u.a. 1991, S. 124ff.Google Scholar
  141. 265.
    Vgl. Zionts, S.: Multiple Criteria Mathematical Programming: An Overview and Several Approaches, 1972, S. 103ff.Google Scholar
  142. 266.
    Vgl. Chankong, V. / Haimes, Y. Y.: Multiobjective Decision Making: Theory and Methodology, 1972, S. 341ff.;Google Scholar
  143. 266a.
    Roy, B. / Vincke, P.: Multicriteria Analysis: Survey and New Directions, 1972, S. 212.Google Scholar
  144. 267.
    Vgl. Zionts, S.: Multiple Criteria Mathematical Programming: An Update Overview and Several Approaches, 1972, S. 46 ff.Google Scholar
  145. 268.
    Vgl. Nitzsch, R. v.: Entscheidungen bei Zielkonflikten, 1972, S. 20.Google Scholar
  146. 269.
    Vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1972, S. 224ff.Google Scholar
  147. 270.
    Vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, 1972, S. 1155.Google Scholar
  148. 271.
    Vgl. zu den folgenden Ausführungen ebenda, S. 1157.Google Scholar
  149. 272.
    Vgl. Bamberg, G. / Coenenberg, A. G.: Betriebswirtschaftliche Entscheidungslehre, 1972, S. 57;Google Scholar
  150. 272a.
    Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1972, S. 230ff;Google Scholar
  151. 272b.
    Zeleny, M.: Multiple Criteria Decision Making, 1972, S. 363;Google Scholar
  152. 272c.
    Zionts, S.: Multiple Criteria Mathematical Programming: An Overview and Several Approaches, 1972, S. 103ff.;Google Scholar
  153. 272d.
    Nitzsch, R. v.: Entscheidungen bei Zielkonflikten, 1972, S. 20;Google Scholar
  154. 272e.
    Steuer, R. E.: Multiple Criteria Optimization: Theory, Computation, and Application, 1972, S. 379ff.;Google Scholar
  155. 272f.
    White, D. J.: Optimality and Efficiency, 1972, S. 200ff. ;Google Scholar
  156. 272g.
    Zionts, S.: Multiple Criteria Mathematical Programming: An Update Overview and Several Approaches, 1972, S. 40ff.Google Scholar
  157. 272h.
    Zu Computertests dieses Verfahrens vgl. Steuer, R. / Gardiner, L.: On the Computational Testing of Procedures for Interactive Multiple Objective Linear Programming, 1972, S. 124ff.Google Scholar
  158. 272i.
    Eine Weiterentwicklung hinsichtlich der Ganzzahligkeit liefern Ramesh / Karwan / Zionts. Vgl. Ramesh, R. / Karwan, M. H. / Zionts, S.: Preference Structure Representation Using Convex cones in Multicriteria Integer Programming, in: Management Science, Vol. 35, No. 9, September 1989, S. 1092–1105.CrossRefGoogle Scholar
  159. 273.
    Vgl. Isermann, H.: Optimierung bei mehrfacher Zielsetzung, 1972, S. 479ff.Google Scholar
  160. 274.
    Vgl. Chankong V. / Haimes, Y. Y.: Multiobjective Decision Making: Theory and Methodology, 1972, S 3366ff.Google Scholar
  161. 275.
    Vgl. Roy, B. / Vincke, P.: Multicriteria Analysis: Survey and New Directions, 1972, S. 212.Google Scholar
  162. 276.
    Vgl. ebenda.Google Scholar
  163. 277.
    Vgl. Nitzsch, R. v.: Entscheidungen bei Zielkonflikten, 1972, S. 18ff.Google Scholar
  164. 278.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, 1972, S. 169ff;Google Scholar
  165. 278a.
    Zionts, S.: Multiple Criteria Mathematical Programming: An Update Overview and Several Approaches, 1972, S. 40ff.;Google Scholar
  166. 278b.
    White, D. J.: Optimality and Efficiency, 1972, S. 200ff.;Google Scholar
  167. 278c.
    Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1972, S. 230ff.Google Scholar
  168. 279.
    Vgl. Steuer, R. E.: Multiple Criteria Optimization: Theory, Computation, and Application, 1972, S. 389ff.Google Scholar
  169. 280.
    Vgl. Nitzsch, R. v.: Entscheidungen bei Zielkonflikten, 1972, S. 21.Google Scholar
  170. 281.
    Vgl. Steuer, R. E.: Multiple Criteria Optimization: Theory, Computation, and Application, 1972, S. 394ff.Google Scholar
  171. 282.
    Die folgenden Ausführung sind entnommen aus Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, 1972, S. 1157.Google Scholar
  172. 283.
    Beispielsweise das Verfahren von Geoffrion/Dyer/Feinberg.Google Scholar
  173. 284.
    Vgl. Nitzsch, R. v.: Entscheidungen bei Zielkonflikten, a.a.O., S. 19f.; Zionts, S.: Multiple Criteria Mathematical Programming: An Update Overview and Several Approaches, a.a.O., S. 49ff.Google Scholar
  174. 285.
    Vgl. Zeleny, M.: Multiple Criteria Decision Making, a.a.O., S. 152ff.Google Scholar
  175. 286.
    Vgl. Chankong, V. / Haimes, Y. Y.: Multiobjective Decision Making: Theory and Methodology, a.a.O., S. 321ff.Google Scholar
  176. 287.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, a.a.O., S. 219ff.Google Scholar
  177. 288.
    Vgl. zu diesem Verfahren auch Zeleny, M.: Multiple Criteria Decision Making, a.a.O., S. 153ff.Google Scholar
  178. 289.
    Vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, a.a.O., S. 1 153; derselbe: Multi-Objectiv Programming in the USSR, a.a.O., S. 79ff.; Delgado, M. / Verdegay, J. L. / Vila, M. A.: A Possibilistic Approach for Multiobjective Programming Problems, a.a.O., S. 236. Zionts führt als naive oder einfache Methoden, die mit expliziten Bedingungen arbeiten, folgende Verfahren an: Setting levels of all objectives, setting minimal levels of all but one objective, finding all efficient extreme point solutions sowie using weights to combine objective functions. Vgl. Zionts, S.: Multiple Criteria Mathematical Programming: An Overview and Several Approaches, a.a.O., S. 99ff. Es wird ersichtlich, daß auch hier die Zuordnung von Verfahren aufgrund unterschiedlicher Definitionen erfolgt. Anhand dieses Verfahrens wird ersichtlich, daß Nebenbedingungen mit inflexiblen Zielen gleichzusetzen sind. Vgl. Korhonen, P.: The Multiobjective Linear Programming Decision Support System VIG and Its Applications, in: Costa, C., A. Banae (ed.): Readings in Multiple Criteria Decision Aid, Berlin u.a. 1990, S. 477.Google Scholar
  179. 290.
    Vgl. Zeleny, M.: Multiple Criteria Decision Making, 1990, S. 364ff.Google Scholar
  180. 291.
    Vgl. Lieberman, E. R.: Multi-Objective Programming in the USSR, 1990, S. 47ff.;Google Scholar
  181. 291a.
    Zionts, S.: Multiple Criteria Mathematical Programming: An Overview and Several Approaches, 1990, S. 103ff.;Google Scholar
  182. 291b.
    White, D. J.: Optimality and Efficiency, 1990, S. 207ff.Google Scholar
  183. 292.
    Vgl. Zionts, S.: Multiple Criteria Mathematical Programming: An Update Overview and Several Approaches, 1990, S. 38; White, D. J.: Optimality and Efficiency, a.a.O., S. 207f.Google Scholar
  184. 293.
    Vgl. Zionts, S.: Multiple Criteria Mathematical Programming: An Overview and Several Approaches, 1990, S. 115.Google Scholar
  185. 294.
    Zur Vorgehensweise vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, 1990, S. 1156f.; derselbe: Multi-Objective Programming in the USSR, a.a.O., S. 129.Google Scholar
  186. 295.
    Vgl. Nitzsch, R. v.: Entscheidungen bei Zielkonflikten, a.a.O., S. 19; Kahle, E.: Zielplanung durch Anspruchsanpassung, in: Betriebswirtschaftliche Forschung und Praxis 1971, Heft 11, S. 623–643.Google Scholar
  187. 296.
    Vgl. Zionts, S.: Multiple Criteria Mathematical Programming: An Overview and Several Approaches, 1971, S. 101.Google Scholar
  188. 297.
    Zu den nachfolgenden Verfahrensschritten vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, 1971, S. 1152f.Google Scholar
  189. 298.
    Vgl. Fandel, G.: Optimale Entscheidung bei mehrfacher Zielsetzung, 1971Google Scholar
  190. 298a.
    Zu zusammenfassenden Darstellungen des Verfahrens vgl. z.B. Bamberg, G. / Coenenberg, A. G.: Betriebswirtschaftliche Entscheidungslehre, 1971, S. 57;Google Scholar
  191. 298b.
    Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, 1971, S. 132ff. Kirchgäßner führt hierzu Anwendungsbeispiele auf. Vgl. ebenda, S. 141ff.Google Scholar
  192. 299.
    Vgl. Fandel, G.: Optimale Entscheidung bei mehrfacher Zielsetzung, 1971, S. 56ff.Google Scholar
  193. 300.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, 1971, S. 144. Kirchgäßner gibt hierzu ein Anwendungsbeispiel an. Vgl. Ebenda, S. 141–143.Google Scholar
  194. 301.
    Vgl. Fandel, G.: Optimale Entscheidung bei mehrfacher Zielsetzung, 1971, S. 86.Google Scholar
  195. 302.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, 1971, S. 98ff. Vgl. zur ausführlichen Darstellung des Verfahrens Allgaier, R.: Ein Verfahren zur Lösung von Zielkonflikten, in: Proceedings in Operations Research 5, Hrsg.: J. Hohlas, O. Seifert, P. Stähly und H. J. Zimmermann, Würzburg / Wien 1975, S. 71f.; Allgaier, R.: Zur Lösung von Zielkonflikten, Meisenheim am Glan 1976, S. 50ff.Google Scholar
  196. 303.
    Vgl. Körth, H.: Zur Berücksichtigung mehrerer Zielfunktionen bei der Optimierung von Produktionsplänen, in: Mathematik und Wirtschaft, Band 6, Hrsg.: Heinrich Bader u.a., Berlin (Ost), 1969, S. 184–201.Google Scholar
  197. 304.
    Vgl. Allgaier, R.: Ein Verfahren zur Lösung von Zielkonflikten, 1969, S. 71–72. und Derselbe: Zur Lösung von Zielkonflikten, a.a.O., S. 50ff. Zu Anwendungsbeispielen vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, a.a.O., S. 107f.Google Scholar
  198. 305.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, 1969, S. 100.Google Scholar
  199. 306.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, 1969, S. 99.Google Scholar
  200. 307.
    Vgl. ebenda, S. 104.Google Scholar
  201. 308.
    Vgl. Bamberg, G. / Coenenberg, A. G.: Betriebswirtschaftliche Entscheidungslehre, a.a.O., S. 57, Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, New York u.a. 1982, S. 218ff.;Google Scholar
  202. 308a.
    Benayoun, R. / J. de Montgolfier / J. Tergny / O. Laritchev: Linear Programming with Multiple Objective Functions: STEP-Method (STEM). In: Mathematical Programming 1, No. 3 (1971), S. 366–375; Nitzsch, R. v.: Entscheidungen bei Zielkonflikten, a.a.O., S. 19f.; Steuer, R. E.: Multiple Criteria Optimization: Theory, Computation, and Application, a.a.O., S. 362ff.; Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, a.a.O., S. 109ff. Kirchgäßner liefert zusätzlich Anwendungsbeispiele. Vgl. ebenda, S. 121 ff. Zu Computertests dieses Verfahrens vgl. Steuer, R. / Gardiner, L.: On the Computations Testing of Procedures for Interactive Multiple Objective Linear Programming, a.a.O., S. 123ff.CrossRefGoogle Scholar
  203. 309.
    Eine Weiterentwicklung dieses Verfahrens geht davon aus, daß bereits festgelegt Anspruchsniveaus revidiert werden können. Vgl. Isermann, H.: Optimierung bei mehrfacher Zielsetzung. 1971, S. 472ff.Google Scholar
  204. 310.
    Hierzu und zu den Ausführungen des Verfahrens vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, 1971, S. 109–131, sowie die hier angegebene Literatur.Google Scholar
  205. 311.
    Vgl. Chankong V. / Haimes, Y. Y.: Multiobjective Decision Making: Theory and Methodology, 1971, S. 325ff.; Roy, B. / Vincke, P.: Multicriteria Analysis: Survey and New Directions, a.a.O., S. 212.Google Scholar
  206. 312.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, 1971, S. 110.Google Scholar
  207. 313.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, 1971, S. 117.Google Scholar
  208. 314.
    Vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1971, S. 218.Google Scholar
  209. 315.
    Vgl. Roy, B. / Vincke, P.: Multicriteria Analysis: Survey and New Directions, 1971, S. 212.Google Scholar
  210. 316.
    Vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, 1971, S. 1153f.Google Scholar
  211. 317.
    Vgl. ebenda, S. 1153f.Google Scholar
  212. 318.
    Entwickelt von Monarchi, D. / Kisiel, C. / Duckstein, L.: Interactive Multiobjective Programming in Water Resources: A Case Study, in: Water Resources Research, 9 (4), 1973, pp. 837–850.CrossRefGoogle Scholar
  213. 319.
    Zu weiteren Ausführungen, insbesondere zu der Ausgestaltung der nachfolgend genannten Stufen des Verfahrens, vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1973, S. 244 ff.Google Scholar
  214. 320.
    Nicht explizit aufgeführt wurden z.B. die Methoden IDEA, die Methode von Belenson/Kapur oder die Random-Search-Method. Hierzu vgl. die entsprechende Literatur: Zeleny, M.: Multiple Criteria Decision Making, 1973, S. 369ff.;Google Scholar
  215. 320a.
    Roy, B. / Vincke, P.: Multicriteria Analysis: Survey and New Directions, 1973, S. 212;Google Scholar
  216. 320b.
    Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, 1973, S. 1155.Google Scholar
  217. 321.
    Vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1973, S. 218.Google Scholar
  218. 322.
    Vgl. Nitzsch, R. v.: Entscheidungen bei Zielkonflikten, 1973, S. 19.Google Scholar
  219. 323.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, 1973, S. 97.Google Scholar
  220. 324.
    Vgl. Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1973, S. 218.Google Scholar
  221. 325.
    Vgl. hierzu als Begründung die Annahmen bezüglich der Psychologie eines Entscheidungsprozesses auf S. 9f. dieser Arbeit.Google Scholar
  222. 326.
    Vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, a.a.O., S. 1157f.; Zeleny, M.: Multiple Criteria Decision Making, a.a.O., S. 361.Google Scholar
  223. 327.
    Vgl. Steuer, R. E.: Multiple Criteria Optimization: Theory, Computation, and Application, a.a.O., S. 99ff.; Kornbluth, J. S. H.: A Survey of Goal Programming, a.a.O., S. 600. Zur Ermittlung der Menge der effizienten Lösungen und zu Effizienztestverfahren vgl. z.B. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, a.a.O., S. 219ff. bzw. 228ff.; Nitzsch, R. v.: Entscheidungen bei Zielkonflikten, a.a.O., S. 18; Lowe, T. J. / Thisse, J.-F. / Ward, J. E. / Wendell, R. E.: On Efficient Solutions to Multiple Objective Mathematical Programs, in: Management Science, Vol. 30, No. 1 1, November 1984, S. 1346–1349. Vgl. zu den Effizienzbedingungen in linearen multikriteriellen Vektormaximumproblemen Belenson, S. M. / Kapur, K. C.: An Algorithm for Solving Multicriterion Linear Programming Problems with Examples, in: Operational Research Quarterly, Vol. 24, No. 1, S. 67f.Google Scholar
  224. 328.
    Aufbauend auf diesen Lösungen ist es möglich, auch postoptimale Berechnungen wie bei der Einzielbetrachtung durchzuführen. Vgl. beispielsweise Yu, P. L. / Zeleny, M.: Linear Multiparametric Programming by Multicriteria Simplex Method, in: Management Science, Vol. 23, No. 2, Oktober 1976, S. 159ff.CrossRefGoogle Scholar
  225. 329.
    Vgl. Lieberman, E. R.: Multi-Objective Programming in the USSR, 1976, S. 161ff.;Google Scholar
  226. 329a.
    Kornbluth, J. S. H.: Dynamic Multi-Criteria Decision Making, in: Journal of Multi-Criteria Decision Analysis, Vol. 1, No. 2, October 1992, S. 81–92.CrossRefGoogle Scholar
  227. 330.
    Zur Vorgehensweise vgl. auch Korhonen, P.: The Multiobjective Linear Programming Decision Support System VIG and Its Applications, 1992, S. 483ff.Google Scholar
  228. 331.
    Vgl. Korhonen, P. J. / Wallenius, J.: A Pareto Race, Unpublished Paper, Helsinki School of Economics, 1987,Google Scholar
  229. 331a.
    zitiert in Zionts, S.: Multiple Criteria Mathematical Programming: An Update Overview and Several Approaches, in: Karpak, B. / Zionts, S. (eds.): Multiple Criteria Decision Making and Risk Analysis Using Microcomputers, NATO ASI Series, Series F: Computer and System Sciences, Vol. 56, Berlin / Heidelberg 1989, S. 52. Ähnlich, das heißt nicht ausschließlich eckpunktbezogen wie das Pareto Race, ist das Entscheidungsunterstützungssystem VIG (Visual Interactive Goal Programming), das zur Modellierung und Lösung von Problemen mit mehreren Zielfunktionen innerhalb eines linearen Problems erarbeitet wurde. Vgl. Korhonen, P.: The Multiobjective Linear Programming Decision Support System VIG and Its Applications, a.a.O., S. 471. Beide Programme dienen der Modellmanagement-, der Modellentwicklungs-, der Problemlösungs- sowie der Lösungsausgabefunktion. Vgl. ebenda, S. 478. Zu Computertests des Pareto-Race vgl. Steuer, R. / Gardiner, L.: On the Computational Testing of Procedures for Interactive Multiple Objective Linear Programming, a.a.O., S. 123ff.Google Scholar
  230. 332.
    Vgl. Lieberman, E. R.: Multi-Objective Programming in the USSR, a.a.O., S. 171ff.Google Scholar
  231. 333.
    Vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, a.a.O., S. 1158; derselbe: Multi-Obiective Programming in the USSR, a.a.O., S. 193ff.Google Scholar
  232. 334.
    Vgl. Cohon, J. L.: Applications of Multiple Objectives to Water Resource Problems, a.a.O., S. 255–270.Google Scholar
  233. 335.
    Vgl. Romero, C.: Handbook of Critical Issues in Goal Programming, a.a.O., S. 7ff.; Zeleny, M.: Compromise Programming, in: Cochrane, J. L. / Zeleny, M. (eds.): Multiple Criteria Decision Making, Columbia, South Carolina 1973, S. 262ff.; Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, a.a.O., S. 235ff.;Google Scholar
  234. 335a.
    Yu, P. L.: Multiple Criteria Decision Making — Concepts, Techniques, and Extensions, New York / London 1985, S. 66ff.CrossRefGoogle Scholar
  235. 336.
    Hierbei kann von einer der Spieltheorie ähnlichen Entscheidungssituation ausgegangen werden, wobei die einzelnen Spieler zusätzlich mehrere Kriterien zu beachten haben. Es handelt sich um ein n-PersonenSpiel, das in der Regel nicht von einer Null-Summe ausgehen kann. Vgl. zu Lösungen bei n-PersonenSpielen beispielsweise Szép, J. / Forgó, F.: Einführung in die Spieltheorie, Thun / Frankfurt am Main 1983, S. 207ff. Zu Lösungsansätzen unter Einbezug mehrerer Ziele vgl. Wengler, F.: Spieltheoretische Ansätze zur Lösung multikriterieller Entscheidungsmodelle, a.a.O.Google Scholar
  236. 337.
    Vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, a.a.O., S. 1150f., bzw. zur ausführlichen Darstellung Salukvadze, M. E.: Optimization of Vector Functionals. 1. The Programming of Optimal Trajectories, in: Automation Remote Control, 8 (August 1971), S. 1169–1178.Google Scholar
  237. 338.
    Zur Definition des Idealpunkts vgl. z.B. Zeleny, M.: Multiple Criteria Decision Making, 1971, S. 88ff., S. 142ff. und S. 327;Google Scholar
  238. 338a.
    Goicoechea, A. / Hansen, D. R. / Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications, 1971, S. 235.Google Scholar
  239. 339.
    Vgl. Yu, P. L. / Leitmann, G.: Compromise Solutions, Domination Structures, and Salukvadze’s Solution, in: Journal of Optimization Theory and Applications, 13, 3 (1974), S. 362–378. Diese theoretische Weiterentwicklung wurde von Salukvadze akzeptiert, doch setzte er dagegen, daß die von ihm berechneten praktischen Fälle erwiesen haben, daß die Berücksichtigung der euklidischen Distanz zu effektiven Resultaten führte. Vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, a.a.O., S. 1 149 bzw. Salukvadze, M. E.: Vector-Valued Optimization Problems in Control Theory, Academic Press, New York 1979, S. 8f.Google Scholar
  240. 340.
    Vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, a.a.O., S. 1Google Scholar
  241. 341.
    Vgl. hierzu Zionts, S.: Multiple Criteria Mathematical Programming: An Overview and Several Approaches, a.a.O., S. 99ff.; Zionts, S.: Multiple Criteria Mathematical Programming: An Update Overview and Several Approaches, a.a.O., S. 35f. Zu Computertests dieses Verfahrens vgl. Steuer, R. / Gardiner, L.: On the Computational Testing of Procedures for Interactive Multiple Objective Linear Programming, a.a.O., S. 12Google Scholar
  242. 342.
    Vgl. Lieberman, E. R.: Soviet Multi-Objective Mathematical Programming Methods: An Overview, a.a.O., S. 1151. Ein weiteres diskretes Minimaxproblem, das als 2-Stufen-Algorithmus aus einer Kombination des DEM’ YANOV-Verfahren und dem Newton-Verfahren entwickelt wurde, stellt Hornung vor. Vgl. Hornung, R.: Ein 2-Stufen NEWTON-DEM’YANOV Algorithmus zur Lösung eines diskreten Minimaxproblemes, in: Mathematische Operationsforschung und Statistik, Serie Optimization, Vol. 13 (1982). No. 1. S. 77.CrossRefGoogle Scholar
  243. 343.
    Eine individuelle Durchführung der Verfahren mit anschließender kollektiver Entscheidung widerspricht bei genauer Betrachtung der Definition „a priori”Google Scholar
  244. 344.
    Dieses wurde von Lieberman bei einem Vergleich der Forschungsrichtungen in der ehemaligen Sowietunion gegenüber den westlichen Ländern festgestellt. Vgl. Lieberman, E. R.: Soviet MultiObjective Mathematical Programming Methods: An Overview, a.a.O., S. 1148Google Scholar
  245. 345.
    Vgl. hierzu ebenda, S. 114Google Scholar
  246. 346.
    Auf weitere Ausführungen der genannten Kriterien soll an dieser Stelle verzichtet werden. Es wird auf die in den vorherigen Abschnitten vorgenommenen Erläuterungen verwiesenGoogle Scholar
  247. 347.
    Zu den Rückkopplungen innerhalb eines Entscheidungsprozesses vgl. die Ausführungen des Kapitels 2.2.1 dieser ArbeitGoogle Scholar
  248. 348.
    Vgl. hierzu dieTabelle 2 dieser ArbeitGoogle Scholar
  249. 349.
    Es sei an dieser Stelle nochmals darauf hingewiesen, daß unter Präferenzartikulation ausschließlich die Angabe von Präferenzordnungen beziehungsweise Gewichtungen zu verstehen ist. Grundsätzlich wird davon ausgegangen, daß auf jeden Fall immer die zu beachtenden Ziele vorliegenGoogle Scholar
  250. 350.
    Vgl. Kapitel 2.3, Seite 45ffGoogle Scholar
  251. 351.
    Vgl. Seite 50Google Scholar
  252. 352.
    Vgl. hierzu die Abbildung 13 auf Seite 49 und die Abbildung 12 auf Seite 47 dieser ArbeitGoogle Scholar
  253. 353.
    Dieses entspricht in der Abbildung 12 auf Seite 47 dem Symbol STOP Z1 und wurde nicht weiter ausgeführtGoogle Scholar
  254. 354.
    Vgl. in der Abbildung 12 auf Seite 47 den mit dem Symbol STOP Z2 belegten und nicht weiter verfolgten ProzeßverlaufGoogle Scholar
  255. 355.
    Dieser Verlauf würde in den Abbildung 12, 13 und 14 durch die Symbole ZU, AU beziehungsweise AE und letztendlich EU dargestellt werdenGoogle Scholar
  256. 356.
    Diese Differenzierungskriterien erfolgen in der Phase des Vergleichs von Alternativen. Vgl. hierzu auch S. 39ffGoogle Scholar
  257. 357.
    Vgl. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, a.a.O., S. 96ff. Zur Definition eines Linearen Mehrzielproblems vgl. z.B. Roy B. / Vincke, P.: Multicriteria Analysis: Survey and New Directions, a.a.O., S. 207; Zeleny, M.: Multiple Criteria Decision Making, a.a.O., S. 212ff.; Bod, P.: Lineare Optimierung mittels simultan gegebener Zielfunktionen, in: Prékopa, A.: Colloquium on Applications of Mathematics to Economics, Budapest 1963, Budapest 1965, S. 55ff.Google Scholar
  258. 357a.
    Gal, T.: RIM Multiparametric Linear Programming, in: Management Science, Vol. 21, No. 5, January, 1975, S. 567–575;CrossRefGoogle Scholar
  259. 357b.
    Gal, T. / Nedoma, J.: Multiparametric Linear Programming, in: Management Science, Vol. 18, No. 7, March, 1972, S. 406–422;CrossRefGoogle Scholar
  260. 357c.
    Gal, T.: Linear Parametric Programming — A Brief Survey, in: Mathematical Programming Study 21 (1984), S. 43–68. Chankong/Haimes erläutern zur Linearen Programmierung die wichtigsten unterschiedlichen Lösungsansätze, wobei diese entweder auf Gewichtungscharakterisierungen oder auf ε-constraint-Charakterisierungen aufbauen. Vgl. Chankong, V. / Haimes, Y. Y.: Multiobjective Decision Making: Theory and Methodology, a.a.O., S. 221ff. oder auch Steuer, R. / Gardiner, L.: On the Computational Testing of Procedures for Interactive Multiple Objective Linear Programming, a.a.O., S. 123ff.CrossRefGoogle Scholar
  261. 357d.
    Zur Modellbildung von linearen Problemen vgl. beispielsweise Murphy, F. H. / Stohr, E. A. / Ma, P.-C.: Composition Rules for Building Linear Programming Models from Component Models, in: Management Science, Vol. 38, No. 7, July 1992, S. 948ff. Zu früheren Lösungsansätzen vgl. beispielsweise Dinkelbach, W.: Unternehmerische Entscheidungen bei mehrfacher Zielsetzung, in: Zeitschrift für Betriebswirtschaft, 32, No. 12, 1962, S. 740ffCrossRefGoogle Scholar
  262. 358.
    Vgl. z.B. Kornbluth, J. S. H.: Duality, Indifference and Sensitivity Analysis in Multiple Objective Linear Programming, in: Operational Research Quarterly, Vol. 25, No. 4, S. 599; Benayoun, R. / Montgolfier, J. de / Tergny, J. / Laritchev, O.: Linear Programming with Multiple Objective Functions: STEP Method (STEM), a.a.O., S. 367. Die Übertragung von Methoden linearer Einzielprogrammierung auf den Bereich der Mehrzielprogrammierung erfolgte beispielsweise bei der Betrachtung fraktionaler Probleme, Ganzzahligkeit sowie postoptimaler Rechnungen. Vgl. hierzu z.B. Kirchgäßner, A.: Vergleich von Verfahren zur Lösung von Entscheidungsproblemen mit mehrfacher Zielsetzung, a.a.O., S. 78ff.; McKeown, P. G. / Minch, R. A.: Multiplicative Interval Variation of Objective Function Coefficient in Linear Programming, in: Management Science, Vol. 28, No. 12, December 1982, S. 1462ff.;CrossRefGoogle Scholar
  263. 358a.
    Saltzman, R. M. / Hillier, F. S.: A Heuristic Ceiling Point Algorithm for General Integer Linear Programming, in: Management Science, Vol. 38, No. 2, February 1992, S. 263ff.;CrossRefGoogle Scholar
  264. 358b.
    Ravi, N. / Wendell, R. E.: The Tolerance Approach to Sensitivity Analysis of Matrix Coefficients in Linear Programming, in: Management Science, Vol. 35, No. 9, September 1989, S. 1106ff.;CrossRefGoogle Scholar
  265. 358c.
    Kornbluth, J. S. H. / Steuer, R. E.: Multiple Objective Linear Fractional Programming, in: Management Science, Vol. 27, No. 9, September 1981, S. 1024ff.;CrossRefGoogle Scholar
  266. 358d.
    Herwijnen, M. v. / Rietveld, P. / Thevenet, K. / Tol, R.: Sensitivity Analysis with Interdependent Criteria for Multicriteria Decision Making: The Case of Soil Pollution Treatment, in: Journal of Multi-Criteria Decision Analysis, Vol. 4, No. 1, March 1995, S. 57–70.CrossRefGoogle Scholar
  267. 358e.
    Zur Unsicherheit der Zielfunktionskoeffizienten und damit zur Bandbreitenangabe dieser Daten vgl. Bitran, G. R.: Linear Multiple Objective Problems with Interval Coefficients, in: Management Science, Vol. 26, No. 7, July 1980, S. 694ffCrossRefGoogle Scholar
  268. 359.
    Bezüglich der Zielgewichtungen 1äßt sich allgemein sagen, daß bei fixen, das heißt fest vorgegebenen Gewichten jeweils ein Extremalpunkt generiert wird. Werden hingegen Intervallgewichte zugelassen, so besteht die Möglichkeit, ein Cluster von Extremalpunkten zu ermitteln, aus denen der Entscheidungsträger die endgültige Lösung bestimmen kann. Vgl. hierzu Steuer, R. E.: Multiple Objective Linear Programming with Interval Criterion Weights, in: Management Science, Vol. 23, No. 3, November 1976, S. 305ff. Die Berücksichtigung von Bandbreiten für einzelne Koeffizienten führt zu der Erweiterung der MCDMAnsätze durch die Fuzzy-Set-Theorie. Vgl. hierzu z.B. Delgado, M. / Verdegay, J. L. / Vila, M. A.: A Possibilistic Approach for Multiobjective Programming Problems, a.a.O., S. 229f.;CrossRefGoogle Scholar
  269. 359a.
    Verma, R. K.: Fuzzy Geometric Programming with Several Objective Function, in: Fuzzy Sets and Systems 35 (1990), S. 115–120;CrossRefGoogle Scholar
  270. 359b.
    Siskos, J. / Lochard, J. / Lombard, J.: A Multicriteria Decision-Making Methodology under Fuzziness: Application to the Evaluation of Radiological Protection in Nuclear Power Plants, in: Zimmermann, H.-J. / Zadeh, L. A. / Gaines, B. R. (eds.): Fuzzy Sets and Decision Analysis, TIMS / Studies in the Management Sciences, Volume 20 (1984), S. 261–283;Google Scholar
  271. 359c.
    Mandic, N. J. / Mamdani, E. H.: A Multi-Attribute Decision-Making Model with Fuzzy Rule-Based Modification of Priorities, in: Zimmermann, H.-J. / Zadeh, L. A. / Gaines, B. R. (eds.): Fuzzy Sets and Decision Analysis, TIMS — Studies in the Management Sciences, Vol. 20, Amsterdam u.a. 1984, S. 285–306Google Scholar
  272. 360.
    Vgl. Kornbluth, J. S. H.: Duality, Indifference and Sensitivity Analysis in Multiple Objective Linear Programming, 1984, S. 604. Hinsichtlich des Vorliegens unterschiedlicher Zielfunktionsarten, wie Maximierung, Approximierung, Satisfizierung sowie exakte Erreichung vorgegebener Zielwerte, innerhalb eines einzigen Entscheidungsproblemes sieht Dinkelbach zwar keine theoretischen, aber praktische Schwierigkeiten. Hierauf soll an dieser Stelle nicht weiter eingegangen werden. Vgl. Dinkelbach, W.: Multicriteria Decision Models with Specified Goal Levels, a.a.O., S. 57ffGoogle Scholar
  273. 361.
    Vgl. Kornbluth, J. S. H.: Duality, Indifference and Sensitivity Analysis in Multiple Objective Linear Programming, a.a.O., S. 601ff.; Hansen, P. / Labbé, M. / Wendell, R. E.: Sensitivity Analysis in Multiple Objective Linear Programming: The Tolerance Approach, in: European Journal of Operational Research 38 (1989), S. 63–69.CrossRefGoogle Scholar
  274. 361a.
    Zu einer Einführung in die Sensitivitätsanalyse bei linearen Vektormaximumproblemen vgl. z.B. Gal, T.: Postefficient Sensitivity Analysis in Linear Vector-maximum Problems, in: Nijkamp, P. / Spronk, J. (eds.): Multiple Criteria Analysis, Amsterdam 1981, S. 259–271.Google Scholar
  275. 361b.
    Zu Ansätzen, Postoptimale Analysen mit bislang bestehenden Linearen Programmierungsverfahren zu verbinden vgl. Lee, J. K. / Song, Y. U.: Unification of Linear Programming with a Rule-based System by the Post-model Analysis Approach, in: Management Science, Vol. 41, No. 5, May 1995, S. 835–847, insbesondere den Hinweis auf die in weiteren Forschungen noch zu berücksichtigenden Verfahren mit mehreren Zielfunktionen auf S. 846CrossRefGoogle Scholar
  276. 362.
    Zu unterschiedlichen Repräsentationsmethoden und ihrer Eignung, das Problem zwischen dem Bedürfnis eines eindeutigen, präzisen Inputs des Entscheidungsträgers für den Optimierer und den begrenzten kognitiven Fähigkeiten des Menschen beziehungsweise Entscheidungsträgers zu verringern, vgl. z.B. Murphy, Frederic, H. / Stohr, Edward A. / Asthana, A.: Representation Schemes for Linear Programming Models, in: Management Science, Vol. 38, July 1992, S. 964ff. Zu weiteren Darstellungsformen von Ergebnissen, unabhängig von der Linearität der Modelle, vgl. z.B. Vetschera, R.: Visualisierungstechniken in Entscheidungsproblemen bei mehrfacher Zielsetzung, Arbeitsbericht Serie I — Nr. 267 der Universität Konstanz, September 1993;CrossRefGoogle Scholar
  277. 362a.
    Buchner, R. / Wolz, M.: Eignung graphischer Verfahren zur Darstellung betriebswirtschaftlicher Sachverhalte, in: zfbf 47 (7/8/1995), S. 633ff.;Google Scholar
  278. 362b.
    Joksch, H. C.: Constraints, Objectives, Efficient Solutions and Suboptimization in Mathematical Programming, in: Zeitschrift für die aesamte Staatswissenschaft. 122. No. 1. 1966. S. 12fGoogle Scholar
  279. 363.
    Vgl. Weitroffer, R. / Narula, S.: The Current State of Nonlinear Multiple Criteria Decision Making, in: Fandel, G. / Gehring, H. (Hrsg.): Operations Research — Beiträge zur quantitativen Wirtschaftsforschung; Tomas Gal zum 65. Geburtstag; Berlin u.a. 1991, S. 109. Romero geht davon aus, daß hinter Linearen Goal-Programming Problemen verborgene Nicht-Linearitäten stehen, die aufgrund von Approximationsverfahren verdeckt wurden. Vgl. Romero, C.: Handbook of Critical Issues in Goal Programming, a.a.O., S. 61ffGoogle Scholar
  280. 364.
    Vgl. Weitroffer, R. / Narula, S.: The Current State of Nonlinear Multiple Criteria Decision Making, a.a.O., S. 117. Die genannten Autoren liefern zudem einen Überblick über nicht-lineare MCDM-Verfahren. Vgl. ebenda, S. 114. Weiterführend siehe auch Schnabel, H.: Nichtlinearität und Chaos in der Wirtschaft. in: WiSt. Heft 11. November 1991. S. 559ffGoogle Scholar
  281. 365.
    Jedoch sollte dieser Nachteil nicht überschätzt werden. Eine „richtungweisende” Entscheidungshilfe, die von allen Beteiligten akzeptiert wird, ist häufig vorteilhafter, als eine „fast-optimale” Lösung eines komplexen, aber nicht nachvollziehbaren Verfahrens, dessen Lösung bei der Realisierung nicht unterstützt wird.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1996

Authors and Affiliations

  • Ruth Paschka

There are no affiliations available

Personalised recommendations