Advertisement

Zusammenfassung

Die einfachste periodische Funktion ist die Sinusfunktion. Ihre Kurve kann man nach Abb. 2.1 a folgendermaßen erzeugen:

Der Radiusvektor MP mit der konstanten Länge │MP│ = a dreht sich mit konstanter Winkelgeschwindigkeit α um den festen Punkt M und beschreibt einen vollen Umlauf in der Zeit T. Zur Zeit t = 0 befindet er sich in der in Abb. 2.1 a gezeichneten Stellung, wo er mit der positiven Richtung der Waagerechten den Winkel β bildet. In jedem Zeitmoment besitzt MP eine vertikale Komponente FP = MP′. Diese denkt man sich in dem anliegenden Wegzeitdiagramm als Funktion von α t eingetragen. Die Gesamtheit der Spitzen dieser übertragenen Vertikalkomponenten bildet die Sinuskurve.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Fachmedien Wiesbaden 1965

Authors and Affiliations

  • Johannes Blume

There are no affiliations available

Personalised recommendations