Advertisement

Flugeigenschaften geregelter drehsymmetrischer Flugkörper

  • Hermann Stümke
Chapter
  • 113 Downloads

Zusammenfassung

Die Aufgaben der Flugregelung sind bei drehsymmetrischen Flugkörpern, insbesondere bei Erdsatelliten, noch wesentlich vielfältiger als bei spiegelsymmetrischen Flugzeugen. Die Flugregelung selbst erfolgt jedoch im wesentlichen nach den gleichen Prinzipien, solange der Rollwinkel ϕ f nur kleine Abweichungen von einem konstanten mittleren Wert besitzt. Bei der Regelung drallender Flugkörper sind dagegen zusätzliche Überlegungen erforderlich, die im folgenden an einem einfachen Beispiel dargelegt werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kap. VII

a) Bücher

  1. [7-000]
    N. N.: Guidance and control. AGARDograph 21 (Sept. 1956).Google Scholar
  2. [7-001]
    Benecke, Th. und A. W. Quick (Herausg.): History of German guided missiles development. AGARD. Braunschweig, 1957.Google Scholar
  3. [7-002]
    Department of the Air Force: Guided missiles. New York, 1958. [7–003] Chin, S S • Missile configuration design. New York, 1961.Google Scholar
  4. [7-004]
    Koelle, H. H. (Herausg.): Handbook of astronautical engineering. New York, 1961.Google Scholar
  5. [7-005]
    Seifert, H. S. und K. Brown (Herausg.): Ballistic missile and space vehicle systems. New York, 1961.zbMATHGoogle Scholar
  6. [7-006]
    Roberson, R. E. und J. S. Farrior (Herausg.): Guidance and control. Progress in Astronautics and Rocketry. Vol. 8. New York, 1962.Google Scholar
  7. [7-006a]
    NASA: Space flight handbooks, Vol. I: Orbital flight handbook (NASA SP 33). Part 1: Basic techniques and data. Part 2: Mission sequencing problems. Part 3: Requirements. Washington D.C., 1963.Google Scholar
  8. [7-007]
    Langford, R. C. und Ch. J. Mundo (Herausg.): Guidance and control — II. Progress in Astronautics and Aeronautics. Vol. 13. New York, 1964.Google Scholar
  9. [7-008]
    Blakelock, J. H.: Automatic control of aircraft and missiles. New York,1965.Google Scholar

b)Einzelberichte

  1. [7-101]
    Roberson, R. E.: Attitude control of a satellite vehicle — an outline of the problem. VIII. Kongr. Internat. Astronaut. Barcelona, 1957, S. 317–339.Google Scholar
  2. [7-102]
    Roberson, R. E.: Principles of inertial control of satellite attitude. IX. Kongr. Internat. Astronaut. Amsterdam, 1958, Bd. I, S. 33–43.Google Scholar
  3. [7-103]
    Frye, W. E. und E. Y. B. Stearns: Stabilization and attitude control of satellite vehicles. ARS Journal 29, 927–931 (1959).Google Scholar
  4. [7-104]
    Haeussermann, W.: An attitude control system for space vehicles. ARS Journal 29, 203–207 (1959).Google Scholar
  5. [7-105]
    Freeman, G. W.: Reaction controls for re-entry vehicles. Adv. in Astronaut. Sci., Bd. 7, S. 407–420 (1960).Google Scholar
  6. [7-106]
    Geissler, E. D.: Probleme der Richtungsstabilisierung großer gesteuerter Flugkörper. Raketentechnik und Raumfahrtforschung 4, 109–117 (1960).Google Scholar
  7. [7-107]
    Himmler, C. R.: Elektrohydraulische Steuerungen in Raumfluggeräten und deren Energieversorgung. Raketentechnik und Raumfahrtforschung 4, 118–126 (1960).Google Scholar
  8. [7-108]
    Howe, R. M.: Attitude control of rockets using a single axis control jet. XI. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. II, S. 67–87.Google Scholar
  9. [7-109]
    Kooy, J. M. J.: On the dynamics of a space vehicle, equipped with one ain rocket motor and two Vernier motors. XI. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. II, S. 67–87 und Astronaut. Acta 6, 322–341 (1960).Google Scholar
  10. [7-110]
    Marino, J.: Space vehicle attitude dynamics during velocity corrections. Adv. in Astronaut. Sci., Bd. 7, S. 268–279 (1960).Google Scholar
  11. [7-111]
    Mueller, H.: An attitude control system for extremely small control forces. XI. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. I, S. 392–403.Google Scholar
  12. [7-112]
    Ritchie, M. L. u. a.: Some control-display aspects of manual attitude control in space. Adv. in Astronaut. Sci., Bd. 6, S. 170–191 (1960).Google Scholar
  13. [7-113]
    Stafford, R. L.: Preliminary considerations for attitude control of space vehicles. Adv. in Astronaut. Sci., Bd. 7, S. 250–267 (1960).Google Scholar
  14. [7-114]
    West, C. T. und R. Goodstein: On the simplification of the attitude equations of a satellite. Adv. in Astronaut. Sci., Bd. 6, S. 161–169 (1960).Google Scholar
  15. [7-115]
    Cole, R. D. u. a.: Attitude control of rotating satellites. ARS Journal 31, 1116 1447 (1961).Google Scholar
  16. [7-116]
    Hultquist, P. F.: Gravitational torque impulse on a stabilized satellite. ARS Journal 31, 1506–1509 (1961).zbMATHGoogle Scholar
  17. [7-117]
    Rose, P. H. D. und J. E. Hayes: Drag modulation and celestial mechanics. Adv. in Astronaut. Sci., Bd. 8, S. 178–187 (1961).Google Scholar
  18. [7-118]
    Bodner, V. A. und V. P. Seleznev: Theory of three-axis stable systems employing external information. ARS Journal 32, 819–825 (1962).Google Scholar
  19. [7-119]
    Cannon, R. H. jr.: Some basic response relations for reaction-wheel atti- tude control. ARS Journal 32, 61–74 (1962).zbMATHGoogle Scholar
  20. [7-120]
    Freed, L. E.: Attitude control system for a spinning body. ARS Journal 32, 396–401 (1962).zbMATHGoogle Scholar
  21. [7-121]
    Häussermann, W.: Recent advances in attitude control of space vehicles. ARS Journal 32, 188–195 (1962).Google Scholar
  22. [7-122]
    Israel, G. und Mme. A. Vassy: Résultats concernant l’attitude d’une fusée Véronique obtenus au moyen de capteurs magnétiques. Astronaut. Acta 8, 264–277 (1962).Google Scholar
  23. [7-123]
    Leondes, C. T. u. a.: Analysis and synthesis of a particular class of satellite-control systems. J. Aero. Sci. 29, 1433–1453 (1962).zbMATHGoogle Scholar
  24. [7-124]
    Savet,P. H. Attitude control of orbiting satellites at high eccentricity. ARS Journal 32, 1577–1582 (1962).zbMATHGoogle Scholar
  25. [7-125]
    Bauer,H.F.: Stability boundaries of liquid-propelled space vehicles’ with sloshing. AIAA Journal 1 1583–1589 (1963).zbMATHCrossRefGoogle Scholar
  26. [7-126]
    Gispert,H.G.u.a.: Ein mathematisches Modell eines rollstabilisierten Flugkörpers mit und ohne Strahlsteuerung. Z. Flugwiss. 11, 192–196 (1963).zbMATHGoogle Scholar
  27. [7-127]
    Huston,R.L.: Gyroscopic stabilization of space vehicles. AIAA Journal 1 1694–1696 (1963).Google Scholar
  28. [7-128]
    Kennedy,H.B.:A gyro n-cmentum exchange device for space vehicle attitude control. AIAA Journal 1 1110–1118 (1963).zbMATHCrossRefGoogle Scholar
  29. [7-129]
    LeCompte, G. W. und J. G. Bland: Simply mechanized attitude control for spinning vehicles. J. Spacecraft 1, 593–598 (1964).CrossRefGoogle Scholar
  30. [7-130]
    Merz, A. W.: Missile attitude stabilization by Lyapunov’s second method. J. Spacecraft 1, 598–604 (1964).CrossRefGoogle Scholar
  31. [7-131]
    Wadleigh, K. H. u. a.: Spinning vehicle nutation damper. J. Spacecraft 1, 588–592 (1964).CrossRefGoogle Scholar
  32. [7-132]
    Cannon, R. H. jr. und W. G. Eppler jr.: Vector reticle, control action display in manual control of space vehicle attitude. J. Spacecraft 2, 172–182 (1965).CrossRefGoogle Scholar
  33. [7-133]
    Ergin, E. I. und P. C. Wheeler: Magnetic attitude control of a spinning satellite. J. Spacecraft 2, 846–850 (1965).CrossRefGoogle Scholar
  34. [7-134]
    Friedland,B.: Optimum control of an unstable booster with actuator position and rate limits. AIAA Journal 3, 1268–1274 (1965).Google Scholar
  35. [7-135]
    Gordon, R. L.: An orbital gyrocompass heading reference for satellite vehicles. J. Spacecraft 2, 851–856 (1965).CrossRefGoogle Scholar
  36. [7-136]
    Gutman, A. S.: Gravity-gradient stabilization for a spinning satellite with despun line of sight. J. Spacecraft 2, 584–590 (1965).CrossRefGoogle Scholar
  37. [7-137]
    Liska, D. J. und W. H. Zimn:errnan: Effect of gravity gradient on attitude control of a space station. J. Spacecraft 2, 419–425 (1965).Google Scholar
  38. [7-138]
    Schmieder, L. u. a.: Lageregelung von Raumfahrzeugen mittels Schwungmassen. Z. Flugwiss. 13, 357–372 (1965).Google Scholar
  39. [7-139]
    Stümke, H.: Optimale Lagesteuerung von drallenden Flugkörpern nach dem Zwei-Impulse-Verfahren. Z. Flugwiss. 16, 40–56 (1968).zbMATHGoogle Scholar
  40. [7-201]
    Kooy, J. M. J.: On the calculation of the powered flight of a long-range rocket supervised by an automatic pilot. Astronaut. Acta 1, 191–198 (1955).MathSciNetGoogle Scholar
  41. [7-202]
    Guanella, G.: Das Grob-Fein-Leitstrahl-Steuerungssystem. Raketentechnik und Raumfahrtforschung 2, 109–116 (1958).Google Scholar
  42. [7-203]
    Müller, F.: Systematik der Lenkverfahren. Raketentechnik und Raumfahrtforschung 2, 38–44 (1958).Google Scholar
  43. [7-204]
    O’Donnel, C. F.: Inertial navigation. J. Franklin Inst. 266, 257–277 ( 1958 I I ).CrossRefGoogle Scholar
  44. [7-205]
    Stephens, W. H.: Telecommand and navigation. Adv. in Aeron. Sci. and Space Flight, Bd. 1, S. 52–78 (1959).Google Scholar
  45. [7-206]
    FitzGibbon, M. C.: Satellite orbit control system. Adv. in Astronaut. Sci., Bd. 5, S. 82–97 (1960).Google Scholar
  46. [7-207]
    Karrenberg, H. K. und R. E. Roberson: Guidance and control of „24 hour“ communication satellites. XI. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. I, S. 303–310.Google Scholar
  47. [7-208]
    Levinson, E.: Analysis of a time-varying inertial loop. Adv. in Astronaut. Sci., Bd. 6, S. 229–243 (1960).Google Scholar
  48. [7-209]
    Mueller, F.: Über automatische Steuerungssysteme für ballistische Raketen. Raketentechnik und Raumfahrtforschung 4, 127–135 (1960).Google Scholar
  49. [7-210]
    Reismann, H. und J. S. Pistiner: Design and evaluation of a re-entry guidance system. Astronaut. Acta 6, 79–114 (1960).Google Scholar
  50. [7-211]
    Roberson, R. E.: Path control for satellite rendezvous. Adv. in Astronaut. Sci., Bd. 6, S. 192–228 (1960).Google Scholar
  51. [7-212]
    Roberson, R. E.: On guidance and control requirements in astronautics. J. Franklin Inst. 269 196–220 (1960 I).CrossRefGoogle Scholar
  52. [7-213]
    Soule, P. W.: Rendezvous with satellites in elliptical orbits with low eccentricity. Adv. in Astronaut. Sci., Bd. 7, S. 138–147 (1960).Google Scholar
  53. [7-214]
    Swanson, R. S. u. a.: An astrovehicle rendezvous-guidance concept. Adv. in Astronaut. Sci., Bd. 6, S. 147–160 (1960).Google Scholar
  54. [7-215]
    Eggleston, J. M. und J. W. Young: Trajectory control for vehicles entering the earth’s atmosphere at small flight-path angles. NASA Rep. R-89 (1961).Google Scholar
  55. [7-215a]
    Grasshoff, L. H.: A method for controlling the attitude of a spin-stabilized satellite. ARS Journal 31, 646–649 (1961).zbMATHGoogle Scholar
  56. [7-216]
    Jacobi, W. J. und C. S. Bridge: Formulation of guidance and control equations, their mechanization and instrumentation. Jahrbuch 1961 der WGL, S. 93–101.Google Scholar
  57. [7-217]
    Shapiro, M.: Attenuated intercept satellite rendezvous system. ARS Journal 31, 1733–1744 (1961).zbMATHGoogle Scholar
  58. [7-218]
    Steffan, K. P.: Satellite rendezvous terminal guidance system. ARS Journal 31, 1516–1521 (1961).Google Scholar
  59. [7-219]
    Braham, H. S. und L. J. Skidmore: Guidance error analysis of satellite trajectories. J. Aero. Sci. 29, 1091–1101 (1962).zbMATHGoogle Scholar
  60. [7-220]
    Bryson, A. E. und W. F. Denham: Guidance scheme for supercircular reentry lifting vehicle. ARS Journal 32, 894–898 (1962).Google Scholar
  61. [7-221]
    Hayes, J. E. und W.E. Van der Velde: Satellite landing control system using drag modulation. ARS Journal 32, 722–730 (1962).Google Scholar
  62. [7-222]
    Imgram, D. A.: Design and dynamic testing of an ultrahigh accuracy satellite stabilization and control system for the orbiting astronomical observatory. XIII. Kongr. Internat. Astronaut. Varna, 1962, Bd. II, S. 638–657.Google Scholar
  63. [7-223]
    Kidd, A. T. und P. W. Soule: Terminal maneuvers for satellite ascent rendezvous. ARS Journal 32, 52–60 (1962).zbMATHGoogle Scholar
  64. [7-224]
    Pascaru, I.: Stability in orbit of the automatic earth satellite in the upper atmosphere. XIII. Kongr. Internat. Astronaut. Varna, 1962, Bd. II, S. 623–637.Google Scholar
  65. [7-225]
    Schultz, O. T.: Elementary derivation of general equations for terrestrial inertial navigation. J. Aero. Sci. 29, 1324–1331 (1962).zbMATHGoogle Scholar
  66. [7-226]
    Swanlund, G.: Analysis techniques to determine guidance computation requirements for space vehicles. ARS Journal 32, 755–761 (1962).Google Scholar
  67. [7-227]
    Burkhart, J. A. und F. T. Smith: Application of dynamic programming to optimizing the orbital control process of a 24-hour communication satellite. AIAA Journal 1, 2551–2557 (1963).CrossRefGoogle Scholar
  68. [7-228]
    Frazier, M. u. a.: Self-contained satellite navigation systems. AIAA Journal 1, 2310–2316 (1963).CrossRefGoogle Scholar
  69. [7-229]
    Kooy, J. M. J.: On ascent guidance for rendezvous. Astronaut. Acta 9, 140–166 (1963).Google Scholar
  70. [7-229a]
    Marchai, C.: Perturbations et stabilization artificielle d’un satellite équatorial de 24 heures. Recherche Aéronautique Nr. 96, 13–22 (1963).Google Scholar
  71. [7-230]
    Jazwinski, A. H.: Optimal trajectories and linear control of nonlinear systems. AIAA Journal 2, 1371–1374 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  72. [7-231]
    Kang, G. und M. F. Kenehan: Longitude positioning and orbit control of the 24-hour equatorial satellite. AIAA Journal 2, 991–999 (1964).CrossRefGoogle Scholar
  73. [7-232]
    Lange, B.: The drag-free satellite. AIAA Journal 2, 1590–1606 (1964).zbMATHCrossRefGoogle Scholar
  74. [7-233]
    Toms, R. S. H. und B. E. Kalensher: Control of a synchronous satellite by continuous radial thrust. AIAA Journal 2, 1179–1188 (1964).CrossRefGoogle Scholar
  75. [7-234]
    Buckingham, A. G. u. a.: Orbit position control using solar pressure. J. Spacecraft 2, 863–867 (1965)CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn GmbH, Braunschweig 1969

Authors and Affiliations

  • Hermann Stümke
    • 1
  1. 1.StuttgartDeutschland

Personalised recommendations