Advertisement

Flugeigenschaften der drehsymmetrischen Flugkörper bei rückwirkungsfreien Rudern und ohne Flugregelung

  • Hermann Stümke
Chapter
  • 115 Downloads

Zusammenfassung

Solange sich drehsymmetrische Flugkörper in tieferen Luftschichten bewegen und damit unter dem Einfluß von merklichen Luftkräften stehen, sind ihre Flugleistungen ebenso wie die der spiegelsymmetrischen Flugzeuge wesentlich von der richtigen Orientierung ihrer Symmetrieachse relativ zur Bewegungsrichtung abhängig. Eine Analyse der möglichen Drehbewegungen ist daher wieder unerläßlich. Als neues Element gegenüber spiegelsymmetrischen Flugzeugen erscheint hier die Möglichkeit der Stabilisierung mittels schneller Drehbewegungen um die Längsachse. Die damit verbundenen Fragen der sekundären Ballistik stehen im Mittelpunkt der folgenden Ausführungen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kap. VI

a) Bücher

  1. [6-001]
    Athen, H.: Ballistik. Heidelberg, 1958.Google Scholar
  2. [6-002]
    Davis, L. jr. u. a.: Exterior ballistics of rockets. New York, 1958.Google Scholar
  3. [6-003]
    Dow, R. B.: Fundamentals of advanced missiles. New York, 1958.Google Scholar
  4. [6-004]
    Kutterer, R. E.: Ballistik. Braunschweig, 1959.Google Scholar
  5. [6-005]
    Molitz, H. und R. Strobel: Äußere Ballistik. Berlin, 1963.Google Scholar
  6. [6-006]
    Roy, M. (Herausg.): Dynamics of satellites. Paris, 1963.Google Scholar
  7. [6-007]
    Singer, S. F. (Herausg.): Torques and attitude sensing in earth satellites. New York, 1964.Google Scholar
  8. [6-008]
    Groves, G. V. (Herausg.): Dynamics of rockets and satellites. Amsterdam, 1965.Google Scholar

b) Einzelberichte

  1. [6-301]
    Bolz, R. E.: Dynamic stability of a missile in rolling flight. J. Aero. Sci. 19, 395–403 (1952).MathSciNetzbMATHGoogle Scholar
  2. [6-302]
    Kutterer, R. E.: Über den Stabilitätsfaktor s, seine praktische Bedeutung und seine Ermittlung. Wehrtech. Monatshefte 54, 315–332 (1957).Google Scholar
  3. [6-303]
    Molitz, H.: Das sekundäre Hauptproblem der äußeren Ballistik. Wehrtech. Monatshefte 54, 333–342 (1957).Google Scholar
  4. [6-304]
    Murphy, Ch. H. jr.: The prediction of nonlinear pitching and yawing motion of symmetric missiles. J. Aero. Sci. 24, 473–479 (1957).zbMATHGoogle Scholar
  5. [6-305]
    Leon, H. I.: Angle of attack convergence of a spinning missile descending through the atmosphere. J. Aero. Sci. 25, 480–484 (1958).Google Scholar
  6. [6-306]
    Garber, T. B.: On the rotational motion of a body re-entering the atmosphere. J. Aero. Sci. 26, 443–449 (1959).MathSciNetGoogle Scholar
  7. [6-307]
    Haack, W.: The calculation of stability and damping of spin-stabilized projectiles. In: W. C. Nelson (Herausg.): Selected topics on ballistics, S. 125–139. AGARD. New York, 1959.Google Scholar
  8. [6-308]
    Laitone, E. V.: Dynamic longitudinal stability equations for the re-entry ballistic missile. J. Aero. Sci. 26, 94–98 (1959).zbMATHGoogle Scholar
  9. [6-309]
    Loh, W. H. T.: Spinning ballistic missiles. J. Aero. Sci. 26, 844–846 (1959).zbMATHGoogle Scholar
  10. [6-310]
    Murphy, Ch. H. jr.: Steady-state circular pitching and yawing motion of symmetric missiles. J. Aero. Sci. 26, 600–601 (1959).Google Scholar
  11. [6-311]
    Bismut, M.: Dynamique du vol. La résonance des missiles tournants. La Recherche Aéronautique, Nr. 74, S. 3–11 (1960).Google Scholar
  12. [6-313]
    Martz, W.: Method for approximating the vacuum motions of spinning symmetrical bodies with nonconstant spin rates. NASA Tech. Rep. R-115 (1961).Google Scholar
  13. [6-314]
    Ambrosio, A.: Estimate of entry vehicle impact point displacement. ARS Journal 32, 1631–1632 (1962).Google Scholar
  14. [6-315]
    Norling, R. A.: Altitude of stabilization for slowly tumbling re-entry vehicles. ARS Journal 32, 1867–1870 (1962).Google Scholar
  15. [6-316]
    Parks, P. C.: Pitch-yaw stability of a missile oscillating in roll via the second method of Lyapunov. J. Aero. Sci. 29, 874 (1962).zbMATHGoogle Scholar
  16. [6-317]
    Remmler, K. L.: Tumbling bodies entering the atmosphere. ARS Journal 32, 92–95 (1962).zbMATHGoogle Scholar
  17. [6-317a]
    Chautard, J. P.: Influence sur la stabilité de la rotation axiale d’un missile contenant une masse liquide. Recherche Aéronautique, Nr. 93, S. 3–10 (1963).Google Scholar
  18. [6-318]
    Leitmann, G.: On the stability of motion of a vibrating variable mass. Astronaut. Acta 9, 167–173 (1963).Google Scholar
  19. [6-319]
    Bauer, H. F.: Treibstoffschwingungen in Raketenbehältern und ihr Einfluß auf die Gesamtstabilität. Z. Flugwiss. 12, 85–101 (1964).Google Scholar
  20. [6-320]
    Glover, L. S.: Effects on roll rate of mass and aerodynamic asymmetries for ballistic re-entry bodies. J. Spacecraft 2, 220–225 (1965).CrossRefGoogle Scholar
  21. [6-321]
    Vaucheret, X.: Dépouillement d’oscillations libres d’un corps de rentrée présentant un cycle limite. Recherche Aérospatiale Nr. 104, 29–32 (1965).Google Scholar
  22. [6-400]
    Rankin, R. A.: The mathematical theory of the motion of rotated and unrotated rockets. Phil. Trans. Roy. Soc. London A 241, 457–585 (1949).MathSciNetzbMATHCrossRefGoogle Scholar
  23. [6-401]
    Davis, R. A.: The response of a bisymmetric aircraft to small combined pitch, yaw and roll control actions. J. Aero. Sci. 24, 905–910 (1957).zbMATHGoogle Scholar
  24. [6-402]
    Buglia, J. J. u. a.: Analytic method of approximating the motion of a spinning vehicle with variable mass and inertia properties acted upon by several disturbing parameters. NASA Tech. Rep. R-110 (1961).Google Scholar
  25. [6-403]
    Greensite, A. L.: Analysis of liquid-propellant mode stability of a multitank ballistic booster vehicle. J. Aero. Sci. 29, 130–139 (1962).Google Scholar
  26. [6-404]
    Harrington, W.J. und R. C. Bullock: The motion of a spinner rocket inside a smoothbore launcher. J. Franklin Inst. 277, 555–565 ( 1964 I ).CrossRefGoogle Scholar
  27. [6-501]
    Klemperer, W. B. und R. M. L. Baker jr.: Satellite librations. Astronaut. Acta 3, 16–27 (1957) und III. Kongr. Internat. Astronaut. Rom, 1956, S. 3–21.Google Scholar
  28. [6-502]
    Davis, W. R.: Determination of a unique attitude for an earth satellite. Adv. in Astronaut. Sci., Bd. 2, S. 10/1–15 (1957).Google Scholar
  29. [6-503]
    DeBra, D. B.: The effect of aerodynamic forces on satellite attitude. Adv. in Astronaut. Sci., Bd. 3, S. 32/1–20 (1958).Google Scholar
  30. [6-504]
    Roberson, R. E.: Gravitational torque on a satellite vehicle. J. Franklin Inst. 265, 13–22 ( 1958 I ).Google Scholar
  31. [6-505]
    Stocker, T. A. J. und R. F. Vachino: The two-dimensional librations of a dumbbell-shaped satellite in a uniform gravitational field. Adv. in Astronaut. Sci., Bd. 3, S. 37/1–20 (1958).Google Scholar
  32. [6-506]
    Beletzkii, V. V.: Motion of an artificial satellite about its center of mass. Artificial Earth Satellites 1, 30–54 (1960).Google Scholar
  33. [6-507]
    Doolin, D. F. und W. C. Triplett: The influence of gravity on the angular motion of an earth satellite. Adv. in Astronaut. Sci., Bd. 6, S. 524–535 (1960).Google Scholar
  34. [6-508]
    Rosner, H. R.: Motion of a dumbbell satellite. Adv. in Astronaut. Sci., Bd. 7, S. 125–137 (1960).Google Scholar
  35. [6-509]
    Schindler, G. M.: Satellite librations in the vicinity of equilibrium solutions. Astronaut. Acta 6, 233–240 (1960).Google Scholar
  36. [6-510]
    Aintablian, A. A.: Projected path of the longitudinal axis of earth-stabilized satellites. ARS Journal 31, 1522–1526 (1961).zbMATHGoogle Scholar
  37. [6-511]
    Beletzkii, V. V.: The libration of a satellite. Artificial Earth Satellites 3, 18–45 (1961).Google Scholar
  38. [6-512]
    Beletzkii, V. V.: Classification of the motions of an artificial earth satellite about the center of mass. Artificial Earth Satellites 6, 10–37 (1961) und ARS Journal 32, 1762–1770 (1962).Google Scholar
  39. [6-513]
    Dunn, J. C.: Magnetic polarization torque in a satellite environment; a comparison with gravitational torque. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 228–249.Google Scholar
  40. [6-514]
    Fischell, R. E.: Magnetic damping of the angular motions of earth satellites. ARS Journal 31, 1210–1217 (1961).zbMATHGoogle Scholar
  41. [6-515]
    Haseltine, W. R.: Passive damping of wobbling satellites: General theory and example. J. Aero. Sci. 29, 543–549, 557 (1962).MathSciNetGoogle Scholar
  42. [6-516]
    Sarychev, V. A.: Investigation of the dynamics of a gravitational stabilization system. XIII. Kongr. Internat. Astronaut. Varna, 1962, Bd. II, S. 658–690.Google Scholar
  43. [6-517]
    Schrello, D. M.: Dynamic stability of aerodynamically responsive satellites. J. Aero. Sci. 29, 1145–1155, 1163 (1962).zbMATHGoogle Scholar
  44. [6-518]
    Zajac, E. E.: Damping of a gravitationally oriented two-body satellite. ARS Journal 32, 1871–1875 (1962).zbMATHGoogle Scholar
  45. [6-518a]
    Kane, T. R. und D. J. Shippy: Attitude stability of a spinning unsymmetrical satellite in a circular orbit. J. Astronaut. Sci. 10, 114–119 (1963).Google Scholar
  46. [6-518b]
    Kurzhals, P. R. und C. R. Keckler: Spin dynamics of manned space stations. NASA Tech. Rep. R. 155 (1963).Google Scholar
  47. [6-519]
    Magnus, K.: Der Stabsatellit in einem radialsymmetrischen Schwerefeld Z. Flugwiss. 11, 233–241 (1963).MathSciNetzbMATHGoogle Scholar
  48. [6-520]
    Magnus, K.: Beiträge zur Untersuchung der Drehbewegungen starrer Satelliten auf kreisförmigen Umlaufbahnen. Jahrbuch 1963 der WGLR, S. 174–180.Google Scholar
  49. [6-521]
    Clancy, Th. F. und Th. P. Mitchell: Effects of radiation forces on the attitude of an artificial earth satellite. AIAA Journal 2, 517–524 (1964).zbMATHCrossRefGoogle Scholar
  50. [6-522]
    Etkin, B.: Dynamics of gravity-oriented orbiting systems with application to passive stabilization. AIAA Journal 2, 1008–1014 (1964).zbMATHCrossRefGoogle Scholar
  51. [6-523]
    Newton, R. R.: Damping of a gravitationally stabilized satellite. AIAA Journal 2, 20–25 (1964).zbMATHCrossRefGoogle Scholar
  52. [6-524]
    Pringle, R. jr.: Bounds on the librations of a symmetrical satellite. AIAA Journal 2, 908–912 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  53. [6-525]
    Schechter, H. B.: Dumbbell libration in elliptic orbits. AIAA Journal 2, 1000–1003 (1964).zbMATHCrossRefGoogle Scholar
  54. [6-525a]
    Schweizer, G.: Eine analytische Untersuchungsmethode für die Stabilität von passiven erdnahen Satelliten. Internat. Colloquium über Techniken des Analog- und Digitalrechnens in der Aeronautik. Proceedings S. 491–497. Brüssel, 1964.Google Scholar
  55. [6-526]
    Yu, E. Y.: Long-term coupling effects between librational and orbital motion of a satellite. AIAA Journal 2, 553–555 (1964).zbMATHCrossRefGoogle Scholar
  56. [6-527]
    Alper, J. R.: Analysis of pendulum damper for satellite wobble damping. J. Spacecraft 2, 50–54 (1965).CrossRefGoogle Scholar
  57. [6-528]
    Austin, F.: Nonlinear dynamics of a free-rotating flexible connected double-mass space station. J. Spacecraft 2, 901–906 (1965).CrossRefGoogle Scholar
  58. [6-529]
    Chiareppa, D. J. und K. F. Nelson: An analysis of the vertistat gravity gradient satellite orientation. J. Spacecraft 2, 167–171 (1965).CrossRefGoogle Scholar
  59. [6-530]
    Gorez, R.: Effet de la precession de l’orbite sur la stabilisation gyroscopique d’un satellite, dans le champ magnétique terrestre. Astronaut. Acta 11, 118–122 (1965).Google Scholar
  60. [6-531]
    Gutman, A. S.: Gravity-gradient stabilization for a spinning satellite with despun line of sight. J. Spacecraft 2, 584–590 (1965).CrossRefGoogle Scholar
  61. [6-532]
    Hofer, E.: Partikuläre Lösungen der allgemeinen Grundgleichungen für die Bahn- und Drehbewegungen von Satelliten. Ing. Archiv 34, 264–274 (1965).CrossRefGoogle Scholar
  62. [6-533]
    Kane, T. R. and D. L. Mingori: Effect of a rotor on the attitude stability of a satellite in a circular path. AIAA Journal 3, 936–940 (1965).CrossRefGoogle Scholar
  63. [6-534]
    Likins, P. W.: Stability of a symmetric satellite in attitudes fixed in an orbiting reference frame. J. Astronaut. Sci. 12, 18–24 (1965).Google Scholar
  64. [6-535]
    Liska, D. J. and W. H. Zimmerman: Effect of gravity gradient on attitude control of a space station. J. Spacecraft 2, 419–425 (1965).CrossRefGoogle Scholar
  65. [6-536]
    Morgan, S. P. and E. Y. Yu: Meteoric disturbances of gravitationally oriented satellites. J. Spacecraft 2, 857–862 (1965).CrossRefGoogle Scholar
  66. [5-537]
    Murphy, C. H.: Angular motion of a re-entry symmetric missile. AIAA Journal 3, 1275–1282 (1965).CrossRefGoogle Scholar
  67. [6-538]
    Pringle, R. jr.: Tumbling motions of an artificial satellite. AIAA Journal 3, 1087–1093 (1965).CrossRefGoogle Scholar
  68. [6-539]
    Tai, C. L. and M. M. H. Loh: Planar motion of a rotating cable-connected space-station in orbit. J. Spacecraft 2, 889–894 (1965).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn GmbH, Braunschweig 1969

Authors and Affiliations

  • Hermann Stümke
    • 1
  1. 1.StuttgartDeutschland

Personalised recommendations