Skip to main content

Flugleistungen der drehsymmetrischen Flugkörper

  • Chapter
Grundzüge der Flugmechanik und Ballistik
  • 189 Accesses

Zusammenfassung

Die ersten beiden Abschnitte dieses Kapitels behandeln die Antriebsbahn (5.1) bzw. die Freiflugbahn (5.2), S. 356, von Geschoß und Rakete einschließlich des Problems des Wiedereintritts von irgendwelchen Flugkörpern, insbesondere von künstlichen Erdsatelliten, in die Erdatmosphäre (5.2.23), S. 369. Im folgenden Abschnitt 5.3, S. 372, wird die Keplerbewegung einbezogen und die Differentialgleichungen der Bahnelemente bei beliebigen Störungen auf anschaulichem Wege hergeleitet. Der Einfluß der Erdabplattung auf die Satellitenbahn (5.4), S. 396, die Lebensdauer eines Satelliten bei Berücksichtigung des Luftwiderstandes (5.5), S. 407, und der Übergang von einer Keplerbahn in eine andere mit Hilfe von Zusatzimpulsen (5.6), S. 413, sind im Grunde nur spezielle Anwendungen der Störungstheorie. Wegen der außerordentlich intensiven Bearbeitung, die diese drei Probleme in den letzten Jahren erfahren haben, ist jedoch ihrer Einführung jeweils ein besonderer Abschnitt vorbehalten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kap. V

a) Bücher

  1. Bauschinger, J.: Die Bahnbestimmung der Himmelskörper. Leipzig, 1906.

    Google Scholar 

  2. Charbonnier, P.: Balistique intérieure. Paris, 1908.

    Google Scholar 

  3. Cranz, C.: Lehrbuch der Ballistik. Bd. I. Äußere Ballistik. Berlin, 1925. Bd. 2. Innere Ballistik. 1926.

    Google Scholar 

  4. Hohmann, W.: Die Erreichbarkeit der Himmelskörper. München, 1925.

    Google Scholar 

  5. Bollé, E.: Innere Ballistik. In F. Auerbach und W. Hort (Herausg.): Handbuch der physikalischen und technischen Mechanik. Bd. II, 1, S. 276–325. Leipzig, 1928.

    Google Scholar 

  6. Oberth, H.: Wege zur Raumschiffahrt. München, 1928.

    Google Scholar 

  7. Rosser, J. B. u. a.: Mathematical theory of rocket flight. New York, 1947.

    Google Scholar 

  8. Sänger, R.: Ballistische Störungstheorie unter besonderer Berücksichtigung der Wettereinflüsse. Basel, 1949.

    Google Scholar 

  9. N.N.: Oerlikon Taschenbuch, Zürich-Oerlikon, 1956. ( Artikel über innere und äußere Ballistik, Meßtechnik und Sonderwaffen).

    Google Scholar 

  10. Royal Aeronautical Society u. a.: High altitude and satellite rockets. (Symposium Cranfield, 1957). New York, 1959.

    Google Scholar 

  11. Stumpff, K.: Himmelsmechanik. Bd. I (1959), Bd. II. Berlin, 1965.

    Google Scholar 

  12. Stutz, W.: Schießlehre. Basel, 1959.

    Google Scholar 

  13. Berman, A. I.: The physical principles of astronautics. New York, 1961.

    Google Scholar 

  14. Brouwer, D. und G. M. Clemence: Methods of celestial mechanics. New York, 1961.

    Google Scholar 

  15. Ehricke, K A.: Space flight. I. Environment and celestial mechanics. II. Dynamics. III. Operations. New York, 1961.

    Google Scholar 

  16. Morrow, C. T. u. a. (Herausg.): Ballistic missile and space technology. New York, 1961.

    Google Scholar 

  17. Duncan, R. C.: Dynamics of atmospheric entry. New York, 1962.

    Google Scholar 

  18. Leitmann, G. (Herausg.): Optimization techniques. With application to aerospace systems. New York, 1962.

    Google Scholar 

  19. Moulton, F. R.: Methods in exterior ballistics. New York, 1962.

    Google Scholar 

  20. Nelson, W. C. und E. E. Loft: Space mechanics. Englewood Cliffs, N. J., 1962.

    Google Scholar 

  21. Roberson, R. E. und J. S. Farrior (Herausg.): Guidance and control. New York, 1962.

    Google Scholar 

  22. Salmon, M.: Principes du vol balistique et spatial. Paris, 1962.

    Google Scholar 

  23. Bohrmann, A.: Bahnen künstlicher Satelliten. Mannheim, 1963.

    Google Scholar 

  24. Brüning, G.: Flugmechanische Probleme an Raumfahrt- und Wiedereintrittsflugkörpern. 2. Lehrgang für Raumfahrttechnik (Braunschweig 1963) Bd. II, 301–1/153.

    Google Scholar 

  25. Lawden, D. F.: Optimal trajectories for space navigation. London, 1963.

    Google Scholar 

  26. Leondes, C. T. (Herausg.): Guidance and control of aerospace vehicles. New York, 1963.

    Google Scholar 

  27. Loh, W. H. T.: Dynamics and thermodynamics of planetary entry. Englewood Cliffs, N. J., 1963.

    Google Scholar 

  28. Petersen N. V. (Herausg.): Advances in astronautical sciences. Bd. 16, Teil I und II: Space rendezvous, rescues and recovery. New York, 1963.

    Google Scholar 

  29. Riley, F. E. und J. D. Sailor: Space systems engineering. New York, 1963.

    Google Scholar 

  30. Rössger, E. und H. Zehle: Grundlagen der Raumfahrzeugführung. Köln, 1963.

    Google Scholar 

  31. White, J. F. (Herausg.): Flight performance handbook for powered flight operations, flight mechanics and space vehicle design, empirical formula, analytic approximations and graphical aids. London, 1963.

    Google Scholar 

  32. Wolverton, R. W.: Flight performance handbook for orbital operations. New York, 1963.

    Google Scholar 

  33. Battin, R. H.: Astronautical guidance. New York, 1964.

    Google Scholar 

  34. Gantmakher, F. R. und L. M. Levin: The flight of uncontrolled rockets. Oxford, 1964.

    Google Scholar 

  35. King-Hele, D.: Theory of satellite orbits in an atmosphere. London, 1964.

    Google Scholar 

  36. Koelle, H. H.: Theorie und Technik der Raumfahrzeuge. Stuttgart, 1964.

    Google Scholar 

  37. Kurnosova, L. V. (Herausg.): Artificial earth satellites. Bd. 16. New York, 1964. ( Zahlreiche Artikel zum Rückkehr- bzw. Rendezvous-Problem).

    Google Scholar 

  38. Langford, R. C. und Ch. J. Mundo (Herausg.): Guidance and control II. New York, 1964.

    Google Scholar 

  39. Szebehely, V. G. (Herausg.): Celestial mechanics and astrodynamics. New York, 1964.

    Google Scholar 

  40. Groves, G. V. (Herausg.): Dynamics of rockets and satellites. Amsterdam, 1965.

    Google Scholar 

  41. Seigel, A. E.: The theory of high speed guns. AGARDograph 91 (Mai 1965 ).

    Google Scholar 

  42. Vertregt, M.: Principles of astronautics. New York, 1965.

    Google Scholar 

  43. Love, A. E. H. und F. R. Pidduck: Lagrange’s ballistic problem. Phil. Trans. Roy. Soc. A 222, 167–226 (1922).

    Google Scholar 

  44. Thornhill, C. K.: A new special solution to the complete problem of the internal ballistics of guns. AGARD Rep. 550 (1966).

    Google Scholar 

  45. Krause, H. G. L.: Allgemeine Theorie der Stufenraketen. Weltraumfahrt 4, 52–59 (1953).

    Google Scholar 

  46. Ehricke, K. A.: Ascent of orbital vehicles. Astronaut. Acta 2, 175–190 (1956).

    Google Scholar 

  47. Perkins, F. M.: Flight mechanics of ascending satellite vehicles. ARS Journal 26, 352–358 (1956).

    Google Scholar 

  48. Reece, J. W. u. a.: Ballistic missile performance. ARS Journal 26, 251–255 (1956).

    Google Scholar 

  49. West, C. D.: Boost phase trajectory analysis techniques. ARS Journal 27, 527–533 (1957).

    Google Scholar 

  50. Koelle, H. H.: Über eine Näherungsmethode zur Berechnung von Kreisbahnraketen. Raketentechnik und Raumfahrtforschung 2, 8–12 (1958).

    Google Scholar 

  51. Koelle, H. H.: On the development of orbital techniques. IX. Kongr. Internat. Astronaut. Amsterdam, 1958, Bd. II, S. 702–746.

    Google Scholar 

  52. Scholze, O.: Einflußgrößen ballistischer Fern-Flugkörper. Raketentechnik und Raumfahrtforschung 2, 2–8 (1958).

    Google Scholar 

  53. Singer, S. F. und R. C. Wentworth: A method for calculating impact points of ballistic rockets. ARS Journal 27, 407–409 (1957) und 28, 684–687 (1958).

    Google Scholar 

  54. Struble, R. A. u. a.: The trajectory of a rocket with thrust. ARS Journal 28, 472–478 (1958).

    Google Scholar 

  55. Veubeke, Fraeijs de, B.: Le problème du maximum de rayon d’action dans un champ de gravitation uniforme. Astronaut. Acta 4, 1–14 (1958).

    MathSciNet  Google Scholar 

  56. Weisbord, L.: A generalized optimization procedure for N-staged missiles. ARS Journal 28, 164–167 (1958).

    Google Scholar 

  57. Froehlich, J. E. und A. R. Hibbs: Ballistics of the Explorer. In: W. C. Nelson (Herausg.): Selected topics on ballistics, S. 59–73. AGARD. New York, 1959.

    Google Scholar 

  58. Hoelker, R. F.: Launching of Explorer I. In: W. C. Nelson (Herausg.): Selected topics on ballistics, S. 74–87. AGARD. New York, 1959.

    Google Scholar 

  59. Kelley, A. J.: Effect of thrust termination process upon range dispersion of a ballistic missile. ARS Journal 29, 432–440 (1959).

    Google Scholar 

  60. Scholze, O.: Graphische Ermittlung der Haupteinfluß- und Vorentwurfsgrößen von Flugkörpern. Raketentechnik und Raumfahrtforschung 3, 36–44 (1959).

    Google Scholar 

  61. Traenkle, C. A.: Mechanics of the power and launching phase for missiles and satellites. Ing. Archiv 28, 335–356 (1959).

    Article  MATH  Google Scholar 

  62. Chase, R. L.: Multistage rocket staging optimization. Adv. in Astronaut. Sci., Bd. 6, S. 621–629 (1960).

    Google Scholar 

  63. Froehlich, J. E.: Capabilities of multistaged chemical rocket systems. Astronaut. Acta 6, 311–321 (1960).

    Google Scholar 

  64. Koelle, H. H.: On the optimum size of orbital carrier vehicles based on overall economy. IX. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. I, S. 365–376.

    Google Scholar 

  65. Kulakowski, L. J. und R. T. Stancil: Rocket boost trajectories for maximum burnout velocity. ARS Journal 30, 612–623 (1960).

    MATH  Google Scholar 

  66. Molitz, H.: Der Einfluß des Abkippeffekts auf die Schußweite von Raketen. Wehrtech. Monatshefte 57, 410–419 (1960).

    Google Scholar 

  67. Stümke, H.: Flugleistungsberechnung unbemannter Raketen. In: K. Schütte und H. K. Kaiser (Herausg.): Handbuch der Astronautik, Bd. I, S. 80–109. Konstanz, 1960.

    Google Scholar 

  68. Ehlers, F. E.: Missile trajectories with linear time variation of the sine or tangent of the thrust angle. ARS Journal 31, 631–636 (1961).

    MATH  Google Scholar 

  69. Schulz, W.: Ein Beitrag zur Theorie der Stufenraketen. Z. Flugwiss. 9, 394 401 (1961).

    Google Scholar 

  70. Thackwell, H. L. jr. und J. A. Vandenkerkhove: Optimum staging of solidpropellant rocket vehicles. Astronaut. Acta 7, 190–202 (1961).

    Google Scholar 

  71. Veubeke, Fraeijs de, B. M.: L’étagement optimum des groupes de fusées en fonctionnement parallèle. Astronaut. Acta 7, 359–375 (1961).

    Google Scholar 

  72. Cooper, R. S.: Performance of optimized multistage rockets. J. Aero. Sci. 29, 1339–1343 (1962).

    Google Scholar 

  73. Pollak, R. J.: Rapid determination of the interactions between the ballistic rocket and its trajectory. ARS Journal 32, 42–51 (1962).

    Google Scholar 

  74. Fan, L.-T. und C. Wan: Weight minimization of a step rocket by the discrete maximum principle. J. Spacecraft 1, 123–125 (1964).

    Article  Google Scholar 

  75. Kiessling, W.: Einfluß spezieller Bedingungen beim Aufstieg auf die Auslegungsdaten einer Höhenforschungsrakete. Jahrbuch 1964 der WGLR, S. 245–252.

    Google Scholar 

  76. Koelle, D. E.: Zur Definition und Größe der Nutzlast bei Raumtransporter-Projekten. Raumfahrtforschung 8, 155–160 (1964).

    Google Scholar 

  77. Thomae, H. F.: A technique for optimization of ascent trajectories and propellant loadings of multistage space vehicles. Raumfahrtforschung 8, 115–123 (1964).

    Google Scholar 

  78. Cavoti, C. R.: Optimization of multistage processes. J. Spacecraft 2, 94–97 (1965).

    Article  Google Scholar 

  79. Gray, J. S. and R. V. Alexander: Cost and weight optimization for multistage rockets. J. Spacecraft 2, 80–86 (1965).

    Article  Google Scholar 

  80. Zee, C.-H.: Powered flight trajectories of rockets under constant tangential thrust. J. Astronaut. Sci. 12, 1–6 (1965).

    Google Scholar 

  81. Lawden, D. F.: Minimal trajectories. J. Brit. Interplanet. Soc. 9, 179–186 (1950).

    Google Scholar 

  82. Lawden, D. F.: Optimal programming of rocket thrust direction. Astronaut. Acta 1, 41–56 (1955).

    MathSciNet  Google Scholar 

  83. Lawden, D. F.: Optimum launching of a rocket into an orbit about the earth. Astronaut. Acta 1, 185–190 (1955).

    Google Scholar 

  84. Fried, B. D. und J. M. Richardson: Optimum rocket trajectories. J. Appl. Phys. 27, 955–961 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  85. Miele, A.: Optimum burning program as related to aerodynamic heating for a missile traversing the earth’s atmosphere. ARS Journal 27, 1231–1240 (1957).

    Google Scholar 

  86. Bryson, A. E. und S. E. Ross: Optimum rocket trajectories with aerodynamic drag. ARS Journal 28, 465–469 (1958).

    Google Scholar 

  87. Leitmann, G.: Optimum thrust direction for maximum range. J. Brit. Inter-planet. Soc. 16, 503–507 (1958).

    Google Scholar 

  88. Miele, A.: On the brachistochronic thrust program for a rocket-powered missile travelling in an isothermal medium. ARS Journal 28, 675–684 (1958).

    Google Scholar 

  89. Miele, A.: General variational theory of the flight paths of rocket-powered aircraft, missiles and satellite carriers. IX. Kongr. Internat. Astronaut. Amsterdam, 1958, Bd. II, S. 946–970 und Astronaut. Acta 4, 264–288 (1958).

    Google Scholar 

  90. Miele, A. und C. R. Cavoti: Optimum thrust programming along arbitrarily inclined rectilinear paths. Astronaut. Acta 4, 167–181 (1958).

    Google Scholar 

  91. Miele, A. und C. R. Cavoti: Generalized variational approach to the optimum thrust programming for the vertical flight of a rocket. Z. Flugwiss. 6, 69–77 und 102–109 (1958).

    MATH  Google Scholar 

  92. Newton, R. R.: On the optimum trajectory of a rocket. J. Franklin Inst. 266, 155–187 ( 1958 I I ).

    Article  MathSciNet  Google Scholar 

  93. Okhotsimskii, D. E. und T. M. Eneev: Some variation problems connected with the launching of artificial satellites of the earth. J. Brit. Interplanet. Soc. 16, 263–294 (1958).

    Google Scholar 

  94. Leitmann, G.: On a class of variational problems in rocket flight. J. Aero. Sci. 26, 586–591 (1959).

    MathSciNet  MATH  Google Scholar 

  95. Miele, A. und J. O. Capellari jr.: Dynamic programming for rockets. Z. Flugwiss. 7, 14–21 (1959).

    MATH  Google Scholar 

  96. Traenkle, C. A.: Design parameters and optimization of missile trajectories. Z. Flugwiss. 7, 287–293 (1959).

    Google Scholar 

  97. Faulkner, F. D.: Complete elementary solution to some optimum trajectory problem. ARS Journal 31, 33–39 (1961).

    MATH  Google Scholar 

  98. Leitmann, G.: An elementary derivation of the optimal control conditions. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 275–298.

    Google Scholar 

  99. Miele, A.: The relation between the Green’s theorem approach and the direct methods for extremal problems of a linear type. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 317–334.

    Google Scholar 

  100. Stancil, R. T. und L. J. Kulakowski: Rocket boost vehicle missions optimization. ARS Journal 31, 935–943 (1961).

    Google Scholar 

  101. Contensou, P.: Etude théorique des trajectoires optimales dans un champ de gravitation. Astronaut. Acta 8, 134–150 (1962).

    MathSciNet  Google Scholar 

  102. Leitmann, G.: The optimization of rocket trajectoires — A survey. In: Progress in the Astronautical Sciences. Bd. I, S. 145–213. Amsterdam, 1962.

    Google Scholar 

  103. Schnäbele, W.: Raketen- und Bahnoptimierung. WGL-Lehrgang für Raumfahrttechnik (München 1962), Bd. II, 18–1/21.

    Google Scholar 

  104. Lawden, D. F.: Analytical techniques for the optimization of rocket trajectories. Aeronaut. Quart. 14, 105–124 (1963).

    Google Scholar 

  105. Lutz, O. (Herausg.): 2. Lehrgang für Raumfahrttechnik ( Braunschweig 1963 ), Bd. I. Mehrere Beiträge zur Frage der Bahnoptimierung.

    Google Scholar 

  106. Denham, W. F.: Range maximization of a surface-to-surface missile with in-flight inequality constreints. J. Spacecraft 1, 78–83 (1964).

    Article  Google Scholar 

  107. Heermann, H. und Ph. Kretsinger: The minimum time problem. J. Astronaut. Sci. 11, 93–107 (1964).

    Google Scholar 

  108. Keller, J. L.: On minimum propellant paths for thrust limited rockets. Astronaut. Acta 10, 262–269 (1964).

    MathSciNet  Google Scholar 

  109. Kelley, H. J.: A second variation test for singular extremals. AIAA Journal 2, 1380–1382 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  110. Lawden, D. F.: Trajectory optimization for a rocket with a generalized thrust characteristic. Astronaut. Acta 10, 279–295 (1964).

    MathSciNet  Google Scholar 

  111. Pines, S.: Constants of the motion for optimum thrust trajectories in a central force field. AIAA Journal 2, 2010–2014 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  112. Rosenbloom, A.: Application of optimization techniques. AGARDograph 92 (Okt. 1964 ), S. 1–21.

    Google Scholar 

  113. Schulz, W. und H.-K. Schulze: Die Methode des Dynamic Programming und ihre Anwendung auf Optimierungsaufgaben der Flugmechanik. Jahrbuch 1964 der WGLR, S. 238–244.

    Google Scholar 

  114. Standl, R. T.: A new approach to steepest-ascent trajectory optimization. AIAA Journal 2, 1365–1370 (1964).

    Article  Google Scholar 

  115. Bell, D. J.: Optimal trajectories and the accessory minimum problem. Aeronaut. Quart. 16, 205–220 (1965).

    Google Scholar 

  116. Halkin, H.: Optimal aerodynamic steering for anti-ICBM missiles. J. Astronaut. Sci. 12, 71–82 (1965).

    Google Scholar 

  117. Kopp, R. E. und H. G. Moyer: Necessary conditions for singular extremals. AIAA Journal 3, 1439–1444 (1965).

    Article  MATH  Google Scholar 

  118. Mason, J. D. u. a.: A variational method for optimal staging. AIAA Journal 3, 2007–2012 (1965).

    Article  Google Scholar 

  119. Munick, H.: Goddard problem with bounded thrust. AIAA Journal 3, 1283–1285 (1965).

    Article  MathSciNet  Google Scholar 

  120. Narjes, O.: Über die Bestimmung optimaler, singulärer Steuerungen mit Hilfe des Maximumsprinzips von Pontrjagin. Z. Flugwiss. 13, 252–254 (1965).

    Google Scholar 

  121. Fasella, E.: Tavole balistiche secondarie. Genua, 1901 (zitiert nach H. Athen [6–001]).

    Google Scholar 

  122. Slacci, F.: Sur un problème d’Alembert. Compt. Rend. Ac. Sci. 132, 11751178 und 133, 381–382 (1901).

    Google Scholar 

  123. v. Eberhard, O.: Benutzung der Fasella-Tabellen zur stufenweisen Flugbahnberechnung unter Berücksichtigung der neuen Versuche über den Luftwiderstand ZAMM 11, 253–273 (1931).

    Google Scholar 

  124. Eckel, K.: Die ballistische Störungstheorie. Wehrtech. Monatshefte 52, 10–19, 45–51, 80–84 (1955).

    Google Scholar 

  125. Molitz, H.: Der Einfluß eines konstanten Windes auf die Bahn von Geschossen und Raketen. Wehrtech. Monatshefte 57, 258–268 (1960).

    Google Scholar 

  126. Schweikert, E.: Ballistischer Rechenschieber zur Bestimmung von Geschwindigkeiten und Flugzeiten für Flachbahnen. Wehrtech. Monatshefte 57, 467–475 (1960).

    Google Scholar 

  127. Curti, P.: Zur Graphik der Geschoßbahn. Wehrtech. Monatshefte 57, 334–349, 375–380 (1960), 58, 6–12 (1961), 60, 311–318, (1963).

    Google Scholar 

  128. Sanger, E. und I. Bredt: Ein Raketenantrieb für Langstreckenbomber. Dt. Luftfahrtforschung, UM 3538, 1944.

    Google Scholar 

  129. Stümke, H.: Zwei Flugbahnen des Gleiters A4b mit berichtigten Betriebsdaten (Beitrag zur Frage der zweckmäßigsten Flugart). Bericht Nr. 68/68 der Herresversuchsanstalt Peenemünde (1944).

    Google Scholar 

  130. Krause, H. G. L.: Strenge Integration der Bewegungsgleichung einer senkrecht aufsteigenden Rakete nach Brennschluß in der Atmosphäre. IV. Kongr. Internat. Astronaut. Zürich, 1953, S. 171–180.

    Google Scholar 

  131. Kaeppeler, H. J. und M. E. Kuebler: Die Rückkehr von geflügelten Geräten von Außenstations-Bahnen. V. Kongr. Internat. Astronaut. Innsbruck, 1954, S. 120–149.

    Google Scholar 

  132. Ehricke, K. A.: On the descent of winged orbital vehicles. Astronaut. Acta 1, 137–155 (1955).

    Google Scholar 

  133. Kaeppeler, H. J.: Über eine simultane analytische Integration der Bewegungsgleichungen eines geflügelten Gerätes im Überschallgleitflug. Astronaut. Acta 1, 166–170 (1955).

    MathSciNet  Google Scholar 

  134. King-Hele, D. G.: The descent of an earth-satellite through the upper atmosphere. J. Brit. Interplanet. Soc. 15, 314–323 (1956).

    Google Scholar 

  135. Ferri, A. u. a.: The use of lift for re-entry from satellite trajectories. ARS Journal 27, 1184–1191 (1957).

    Google Scholar 

  136. Allen, H. J.: Hypersonic flight and the re-entry problem. J. Aero. Sci. 25, 217–227 (1958).

    Google Scholar 

  137. Allen, H. J. und A. J. Eggers jr.: A study of the motion and aerodynamic heating of ballistic missiles entering the earth’s atmosphere at high supersonic speeds. NACA Rep. 1381 (1958).

    Google Scholar 

  138. Baker, R. M. L. jr.: Enke’s method and variation of parameters as applied to re-entry trajectories. Adv. in Astronaut. Sci., Bd. 3, S. 36/1–10 (1958).

    Google Scholar 

  139. Bull, G. V. u. a.: Exit and re-entry problems. Aero/Space Eng. 17, 57–62 (Juni, 1958 ).

    Google Scholar 

  140. Eggers, A. J.: A comparative analysis of the performance of long-range hypervelocity vehicles. NACA Rep. 1382 (1958).

    Google Scholar 

  141. Roberson, R. E.: Oblateness correction to impact points of ballistic rockets. J. Franklin Inst. 266, 465–481 ( 1958 I I ).

    Google Scholar 

  142. Robinson, A. C. und A. J. Besonis: On the problems of re-entry into the earth’s atmosphere. Adv. in Astronaut. Sci., Bd. 3, S. 33/1–24 (1958).

    Google Scholar 

  143. Rosenberg, R. M.: On flight trajectories in the neighborhood of a known trajectory. J. Franklin Inst. 266, 109–128, ( 1958 I I ).

    Article  Google Scholar 

  144. Allen, H. J.: Some aerodynamic effects on long-range rocket craft. In: W. C. Nelsen (Herausg.): Selected topics on ballistics, S. 46–58. AGARD. New York, 1959.

    Google Scholar 

  145. Chapman, D. R.: An approximate analytical method for studying entry into planetary atmospheres. NASA Tech. Rep. R-11 (1959).

    Google Scholar 

  146. Lees, L. u. a.: Use of aerodynamic lift during entry into the earth’s atmosphere. ARS Journal 29, 633–641 (1959).

    Google Scholar 

  147. Nonweiler, T.: The motion of an earth satellite on re-entry to the atmosphere. IX. Kongr. Internat. Astronaut. Amsterdam, 1958, Bd. II, 5.842–864. Astronaut. Acta 5, 40–62 (1959).

    Google Scholar 

  148. Paige, H. W.: The technology of manned return from outer space. J. Franklin Inst. 267, 103–118 ( 1959 I ).

    Article  Google Scholar 

  149. Wheelon, A. D.: Free flight of a ballistic missile. ARS Journal 29, 915–926 (1959).

    Google Scholar 

  150. Chapman, D. R.: An analysis of the corridor and guidance requirements for supercircular entry into planetary atmospheres. NASA Tech. Rep. R-55 (1960) und X. Kongr. Internat. Astronaut. London, 1959, Bd. I, S. 254–267.

    Google Scholar 

  151. Loh, W. H. T.: Dynamics and thermodynamics of re-entry. J. Aero. Sci. 27, 748–762 (1960).

    MathSciNet  MATH  Google Scholar 

  152. Loh, W. H. T.: Minor circle flight for boost glide or orbital reentry vehicles. Adv. in Astronaut. Sci. Bd. 6, S. 536–555 (1960).

    Google Scholar 

  153. Becker, J. V. u. a.: Aerodynamics of trajectory control for reentry at escape speed. Astronaut. Acta 7, 334–358 (1961).

    Google Scholar 

  154. Berman, L. J.: Optimum soft landing trajectories. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 353–367.

    Google Scholar 

  155. Broglio, L.: Lois de similitude dans le calcul des trajectoires de rentrée et de l’ablation frontale des engins. Astronaut. Acta 7, 21–34 (1961).

    Google Scholar 

  156. Brun, E. A.: Considérations générales sur le problème de la rentrée. In: L. Broglio (Herausg.): Current Research in Astronaut. Sci., S. 296–321. New York, 1961.

    Google Scholar 

  157. Eggers, A. J. jr. und T. J. Wong: Motion and heating of lifting vehicles during atmosphere entry. ARS Journal 31, 1364–1375 (1961).

    Google Scholar 

  158. Loh, W. H. T.: A unified analytical solution for entry mechanics. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 337–352.

    Google Scholar 

  159. Maday, C. J.: Aerodynamic capture of a ballistic type vehicle travelling at hyperbolic speed. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 380–391.

    Google Scholar 

  160. Warden, R. V.: Ballistic re-entries with a varying W/cD A. ARS Journal 31, 208–213 (1961).

    Google Scholar 

  161. Wong, T. J. und R. E. Slye: The effect of lift on entry corridor depth and guidance requirements for the return lunar flight. NASA Tech. Rep. R-80 (1961).

    Google Scholar 

  162. Bate, R. R. und R. W. Johnson: Empirical formulas for ballistic re-entry trajectories. ARS Journal 32, 1882–1887 (1962).

    Google Scholar 

  163. Blum, R.: Re-entry trajectories: Flat earth approximation. ARS Journal 32, 616–620 (1962).

    MATH  Google Scholar 

  164. Broglio, L.: On guidance and landing accuracy requirements in re-entry trajectories. Astronaut. Acta 8, 245–263 (1962).

    Google Scholar 

  165. Bryson, A. E. u. a.: Determination of lift or drag programs to minimize re-entry heating. J. Aero. Sci. 29, 420–430 (1962).

    MathSciNet  MATH  Google Scholar 

  166. Ferri, A. und Lu Ting: Practical aspects of re-entry problems. Astronaut. Acta 8, 63–81 (1962).

    Google Scholar 

  167. Hunziker, R. R.: Re-entry trajectories for impact prediction and radar acquisition. ARS Journal 32, 1261–1268 (1962).

    MATH  Google Scholar 

  168. Levinsky, E. S.: Application of inequality constreints to varational problems of lifting re-entry. J. Aero. Sci. 29, 400–409 (1962).

    MathSciNet  MATH  Google Scholar 

  169. Loh, W. H. T.: Ballistic re-entry at small angles of inclination. ARS Journal 32, 718–721 (1962).

    MATH  Google Scholar 

  170. Loh, W. H. T.: A second-order theory of entry mechanics into a planetary atmosphere. J. Aero. Sci. 29, 1210–1221, 1237 (1962).

    Google Scholar 

  171. Mandell, D. S.: Maneuvring performance of lifting re-entry vehicles. ARS Journal 32, 346–354 (1962).

    Google Scholar 

  172. Moulin, L.: Précisions réquises pour les trajectoires de retour d’engins spatiaux. XIII. Kongr. Internat. Astronaut. Varna, 1962, Bd. II, S. 523–554.

    Google Scholar 

  173. Tempelman, W. H.: Selected problems in optimum ballistic descent from orbit. Astronaut. Acta 8, 193–204 (1962).

    Google Scholar 

  174. Wang, K. und Lu Ting: Approximate solutions for re-entry trajectories with aerodynamic forces. Astronaut. Acta 8, 28–41 (1962).

    Google Scholar 

  175. Elms, R. V. jr.: Projectile range in excess of 180°. AIAA Journal 1, 2406–2408 (1963).

    Article  Google Scholar 

  176. Grant, F. C.: A theory of space probe entry under conditions of high mass loss. NASA TR 162 (1963).

    Google Scholar 

  177. Hoppe, H.: Flugbahnen für Wiedereintrittskörper mit Auftriebsvermögen. 2. Lehrgang für Raumfahrttechnik (Braunschweig 1963) Bd. II, 302–1/28.

    Google Scholar 

  178. Loh, W. H. T.: Some exact analytical solutions of planetary entry. AIAA Journal 1, 836–842 (1963).

    Article  MATH  Google Scholar 

  179. Shen, Y. C.: Series solution of equations for re-entry vehicles with variable lift and drag coefficients. AIAA Journal 1, 2487–2490 (1963).

    Article  MATH  Google Scholar 

  180. Wang, H. E. und S. T. Chu: Variable-lift re-entry at superorbital and orbital speeds. AIAA Journal 1, 1047–1055 (1963).

    Article  Google Scholar 

  181. Wingrove, R. C.: Survey of atmosphere re-entry guidance and control methods. AIAA Journal 1, 2019–2029 (1963) und NASA Tech. Rep. R. 151 (1963).

    Google Scholar 

  182. Broglio, L.: A general theory on space and re-entry trajectories. AIAA Journal 2, 1774–1781 (1964).

    Article  MATH  Google Scholar 

  183. Brunn, W.: Abstiegsbahnen für Raumflugkörper aus einer erdnahen Umlaufbahn. Jahrbuch 1964 der WGLR, S. 253–262.

    Google Scholar 

  184. Overesch, W.: Untersuchungen zum Problem des Wiedereintritts von Raumflugkörpern mit aerodynamischem Auftrieb. Jahrbuch 1964 der WGLR, S. 263–271.

    Google Scholar 

  185. Citron, S. J. und T. C. Meir: An analytic solution for entry into planetary atmospheres. AIAA Journal 3, 470–475 (1965).

    Article  MATH  Google Scholar 

  186. Loh, W. H. T.: Extension of second-order theory of entry mechanics to oscillatory solutions. AIAA Journal 3, 1688–1691 (1965).

    Article  Google Scholar 

  187. Smith, R. L.: Dynamics of an unusual spinning re-entry body. J. Spacecraft 2, 895–901 (1965).

    Article  Google Scholar 

  188. Spielberg, I. N. und C. B. Cohen: Janus: a manned orbital spacecraft with staged re-entry. J. Spacecraft 2, 531–536 (1965).

    Article  Google Scholar 

  189. Wang, H. E.: Motion of re-entry vehicles during constant-altitude glide. AIAA Journal 3, 1346–1348 (1965).

    Article  Google Scholar 

  190. Spitzer, L. jr.: Perturbations of a satellite orbit. J. Brit. Interplanet. Soc. 9, 131–136 (1950).

    Google Scholar 

  191. Krause, H. G. L.: Die Säkularstörungen einer Außenstationsbahn. III. Kongr. Internat. Astronaut. Stuttgart, 1952, S. 162–173.

    Google Scholar 

  192. Schütte, K.: Die Bahnbestimmung aus dem Vektor der Bahngeschwindigkeit und der Einfluß einer Änderung desselben auf die Bahnelemente. IV. Kongr. Internat. Astronaut. Zürich, 1953, S. 89–102 und Weltraumfahrt 4, 98–107 (1953), 5, 13–20 (1954).

    Google Scholar 

  193. Krause, H. G. L.: Die säkularen und periodischen Störungen der Bahn eines künstlichen Erdsatelliten. VII. Kongr. Internat. Astronaut. Rom, 1956, S. 523–585.

    Google Scholar 

  194. Kooy, J. M. J.: On the application of the method of variation of elliptic orbit elements in case of a satellite vehicle. Astronaut. Acta 3, 179–214 (1957) und VII. Kongr. Internat. Astronaut. Rom, 1956, S. 705–739.

    Google Scholar 

  195. Roberson, R. E.: Orbital behavior of earth satellites. J. Franklin Inst. 264, 181–201, 269–285 ( 1957 I I ).

    Google Scholar 

  196. Gedeon, G. S.: Orbital mechanics of satellites. Adv. in Astronaut. Sci., Bd. 3, S. 19/1–33 (1958).

    Google Scholar 

  197. Herrick, S. und R. M. L. Baker jr.: Recent advances in astrodynamics. ARS Journal 28, 649–654 (1958).

    Google Scholar 

  198. King-Hele, I. G. und R. H. Merson: Satellite orbits in theory and practice. J. Brit. Interplanet. Soc. 16, 446–471 (1958).

    Google Scholar 

  199. Perkins, F. M.: An analytic solution for flight time of satellites in eccentric and circular orbits. Astronaut. Acta 4, 113–134 (1958).

    Google Scholar 

  200. Vertregt, M.: Die Bahnbestimmung aus dem Vektor der Bahngeschwindigkeit. Astronaut. Acta 4, 135–137 (1958).

    Google Scholar 

  201. Gedeon, G. S.: Kinematics of orbital motion. Adv. in Astronaut. Sci., Bd. 7, S. 87–98 (1960).

    Google Scholar 

  202. Gröbner, W. und F. Cap: Perturbation theory of celestial mechanics using Lie series. XI. Kongr. Internat. Astronaut. Stockholm, 1960, S. 348–350.

    Google Scholar 

  203. Herrick, S.: Observation requirement for precision orbit determination. In: N. J. Hopf und W. G. Vincenti (Herausg.): Aeronautics and Astronautics, Proc. Durand Centennial Conf., S. 417–434. New York, 1960.

    Google Scholar 

  204. Lanzano, P.: Application of lunar theory to the motion of satellite. Adv. in Astronaut. Sci., Bd. 6, S. 507–523 (1960).

    Google Scholar 

  205. Weirauch, R. F.: On the accuracy of an elliptic orbit determination. IX. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. I, S. 377–384.

    Google Scholar 

  206. Kislik, M. D.: The motion of an artificial satellite in the normal gravitational field of the earth. Artificial Earth Satellites 4, 183–201 (1961).

    Google Scholar 

  207. Lur’e, A. I.: Equations of disturbed motion in the Kepler problem. Artificial Earth Satellites 4, 288–291 (1961).

    Google Scholar 

  208. Spiess, O. R.: Two notes in orbit theory. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 121–130.

    Google Scholar 

  209. Arcese, A.: The importance of independent estimators in predicting orbital elements. J. Aero. Sci. 29, 1001–1002 (1962).

    Google Scholar 

  210. Dierstein, R.: Bahnen im Schwerefeld. WGL-Lehrgang für Raumfahrttechnik (München 1962) Bd. II,15–1/24.

    Google Scholar 

  211. Mitǎ, M. M.: Sur la possibilité de réalisation d’un vaisseau orbital stationnaire au-dessus d’un point non situé sur l’équateur terrestre. XIII. Kongr. Internat. Astronaut. Varna, 1962, Bd. II, S. 555–570.

    Google Scholar 

  212. Schmidt, W.: Bahnstörungen. WGL-Lehrgang für Raumfahrttechnik (München 1962) Bd. II, 17–1/18.

    Google Scholar 

  213. Thelan, H. T.: Computation of satellite orbits by the Hansen method as modified by Musen. NASA TR 147 (1962).

    Google Scholar 

  214. Traenkle, C. A.: Generalization and applications of the Keplerian time equation. Z. Flugwiss. 10, 306–314 (1962).

    MATH  Google Scholar 

  215. Wen, Li Shu: Differential expressions for nearly rectilinear and rectilinear closed orbits. J. Aero. Sci. 29, 1102–1104 (1962).

    MATH  Google Scholar 

  216. Wen, Li Shu: A unified treatment of „variation of parameters“and „differential expressions“methods in trajectory prediction and error analysis. J. Aero. Sci. 29, 61–66, 120 (1962).

    MATH  Google Scholar 

  217. Wong, P.: Nonsingular variation of parameter equations for computation of space trajectories. ARS Journal 32, 264–265 (1962).

    MATH  Google Scholar 

  218. El’yasberg, P. E.: Determination of orbits from two positions. Artificial Earth Satellites 13, 3–24 (1963).

    Google Scholar 

  219. Haviland, R. P. und C. M. House: Nonequatorial launching to equatorial orbits and general nonplanar launching. AIAA Journal 1, 1336–1342 (1963).

    Article  Google Scholar 

  220. Kislik, M. D.: An analysis of the integrals of the equations of motion of an artificial satellite in the normal gravitational field of the earth. Artificial Earth Satellites 13, 25–55 (1963).

    Google Scholar 

  221. Lidov, M. L.: Evolution of the orbits of artificial satellites of planets as effected by gravitational perturbation from external bodies. AIAA Journal 1, 1985–2002 (1963).

    Article  MATH  Google Scholar 

  222. Beckwith, R. E.: Approximate distribution of nearly circular orbits. AIAA Journal 2, 913–916 (1964).

    Article  MATH  Google Scholar 

  223. Bell, P. 0.: Orbit determination by angular measurements. AIAA Journal 2, 1862–1864 (1964).

    Article  Google Scholar 

  224. Chebotarew, G. A.: Motion of an artificial earth satellite in an orbit of small eccentricity. AIAA Journal 2, 203–208 (1964).

    Article  Google Scholar 

  225. Danby, J. M. A.: Matrix methods in the calculation and analysis of orbits. AIAA Journal 2, 13–16 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  226. Danby, J. M. A.: The matrizant of Keplerian motion. AIAA Journal 2, 16–19 (1964).

    Article  MathSciNet  Google Scholar 

  227. Lubowe, A. G.: High accuracy orbit prediction from node to node Astronaut. Acta 10, 253–261 (1964).

    MathSciNet  Google Scholar 

  228. Nigam, R. C.: Orbital aspects of deployment of satellites. J. Astronaut. Sci. 11, 37–45 (1964).

    MathSciNet  Google Scholar 

  229. Schröter, W.: Über die Bahnvoraussage von Erdsatelliten. Raumfahrtforschung 8, 10–16 (1964).

    Google Scholar 

  230. Lorell, J.: Long term behavior of artificial satellite orbits due to third-body perturbations. J. Astronaut. Sci. 12, 142–149 (1965).

    Google Scholar 

  231. Musen, P.: On the high order effects in the methods of Krylov-Bogoliubov and Poincaré. J. Astronaut. Sci. 12, 129–134 (1965).

    Google Scholar 

  232. Blitzer, L. u. a.: Perturbations of a satellite’s orbit due to the earth’s oblateness. J. Appl. Phys. 27, 1141–1149 (1956) und 28, 279, 1362 (1957).

    MATH  Google Scholar 

  233. Allen, W. A.: Effect on a rocket of the oblateness of a planet. ARS Journal 30, 623–627 (1960).

    MATH  Google Scholar 

  234. Anthony, M. L. u. a.: Escape from an oblate planet. Adv. in Astronaut. Sci., Bd. 7, S. 175–194 (1960).

    Google Scholar 

  235. Geyling, F. T.: Satellite perturbations from extraterrestrial gravitation and radiation pressure. J. Franklin Inst. 269, 375–407 ( 1960 I ).

    Google Scholar 

  236. Hall, N. S. und H. F. Gawlowicz: The oblatory perturbations of satellite orbits. Adv. in Astronaut. Sci., Bd. 6, S. 415–446 (1960).

    Google Scholar 

  237. Petty, C. M. und J. V. Breakwell: Satellite orbits about a planet with rotational symmetry. J. Franklin Inst. 270, 259–282 ( 1960 I I ).

    Google Scholar 

  238. Anthony, M. L. und G. E. Fosdick: Satellite motions about an oblate planet. J. Aero. Sci. 28, 789–802 (1961) und ARS Journal 31, 1225–1232 (1961).

    MATH  Google Scholar 

  239. King-Hele, D. G.: The effect of atmospheric oblateness on a satellite orbit. Astronaut. Acta 7, 390–405 (1961).

    Google Scholar 

  240. Mersman, W. A.: Theory of the secular variations in the orbit of a satellite of an oblate planet. NASA Tech. Rep. R-99 (1961).

    Google Scholar 

  241. Michielsen, H. F.: The effects of earth’s sectorial harmonics on a stationary satellite. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 216–227.

    Google Scholar 

  242. Moc, M. M. und E. E. Karp: Effect of earth oblateness on the anomalistic period of a satellite. ARS Journal 31, 1462–1464 (1961).

    Google Scholar 

  243. Proskurin, V. F. und Y. V. Batrakov: Perturbations of the first order in the motion of artificial satellites, caused by flattening of the earth. Artificial Earth Satellites 3, 46–55 (1961).

    Google Scholar 

  244. Sarychew, V. A.: Influence of the flattening of the earth on the motion of an artificial earth satellite. Artificial Earth Satellites 6, 1–9 (1961).

    Google Scholar 

  245. Blitzer, L.: Synchronous and resonant satellite orbits associated with equatorial ellipticity. ARS Journal 32, 1016–1019 (1962).

    MATH  Google Scholar 

  246. Blitzer, L.: Circular orbits in an axially symmetric gravitational field. ARS Journal 32, 1102 (1962).

    MATH  Google Scholar 

  247. Brenner, J. L.: The equatorial orbit of a near earth satellite. ARS Journal 32, 1560–1563 (1962).

    MathSciNet  MATH  Google Scholar 

  248. Frick, R. H. und T. B. Garber: Perturbations of a synchronous satellite due to triaxiality of the earth. J. Aero. Sci. 29, 1105–1111, 1114 (1962).

    Google Scholar 

  249. Lee, V. A.: Atmosphere oblateness correction factor for circular satellite orbits. ARS Journal 32, 102–103 (1962).

    Google Scholar 

  250. Lorell, J. und J. Anderson: Precession rates for an artificial satellite. XIII. Kongr. Internat. Astronaut. Varna, 1962, Bd. I, S. 451–461.

    Google Scholar 

  251. Mersman, W. A.: The critical inclination problem in satellite orbit theory. NASA Tech. Rep. R-148 (1962).

    Google Scholar 

  252. Sauer, C. G. jr.: Perturbations of a hyperbolic orbit by an oblate planet. ARS Journal 32, 714–717 (1962).

    MATH  Google Scholar 

  253. Sturms, F. M. jr.: Nodal period for a circular earth satellite. ARS Journal 32, 1037–1039 (1962).

    MATH  Google Scholar 

  254. Vries, de, J. P.: The sun’s perturbing effect on motion near a triangular Lagrange point. XIII. Kongr. Internat. Astronaut. Varna, 1962, Bd. I, S. 432–450.

    Google Scholar 

  255. Beletzkii, V. V.: Orbit of an equatorial earth satellite. Artificial Earth Satellites 13, 56–64 (1963).

    Google Scholar 

  256. Claus, A. J. und A. G. Lubowe: A high accuracy perturbation method with direct application to communication satellite orbit prediction. Astronaut. Acta 9, 275–301 (1963).

    MATH  Google Scholar 

  257. Escobal, P. R.: Rise and set time of a satellite about an oblate planet. AIAA Journal 1, 2306–2310 (1963).

    Article  MATH  Google Scholar 

  258. Kalil, F.: Minimum altitude variation orbits about an oblate planet. AIAA Journal 1, 1655–1657 (1963).

    Article  MATH  Google Scholar 

  259. Kalil, F. und F. Martikan: Derivation of nodal period of an earth satellite and comparisons of several first-order secular oblateness results. AIAA Journal 1, 2041–2046 (1963).

    Article  MATH  Google Scholar 

  260. Perkins, F. M.: Flight mechanics of the 24-hour satellite. AIAA Journal 1, 848–851 (1963).

    Article  MATH  Google Scholar 

  261. Geyling, F. T.: Closed-form coordinate perturbations of elliptical orbits due to oblateness. Astronaut. Acta 11, 196–201 (1965).

    MATH  Google Scholar 

  262. Lubowe, A. G.: Application of Lagrange’s planetary equations to orbits with low eccentricities, or low inclination, or both. J. Astronaut. Sci. 12, 7–17 (1965).

    Google Scholar 

  263. Petersen, N. V.: Lifetimes of satellites in near-circular and elliptic orbits. ARS Journal 26, 341–351, 368 (1956) und VII. Kongr. Internat. Astronaut. Rom, 1956, S. 789–810.

    Google Scholar 

  264. Henry, I. G.: Lifetimes of artificial satellites of the earth. ARS Journal 27, 21–24 (1957).

    Google Scholar 

  265. Casei, C. und V. Giavoto: Sul tempo di vita dei satelliti artificiali, IX. Kongr. Internat. Astronaut. Amsterdam, 1958, Bd. I, S. 343–358.

    Google Scholar 

  266. Molitz, H.: Einfluß des Luftwiderstandes auf die Bewegung von Satelliten. Wehrtech. Monatshefte 55, 593–607 (1958).

    Google Scholar 

  267. Nonweiler, T. R. P.: Perturbation of elliptic orbits by atmospheric contact. J. Brit. Interplanet. Soc. 16, 368–379 (1958).

    Google Scholar 

  268. Peterson, L. N.: Motion of a satellite with friction. ARS Journal 28, 750752 (1958).

    Google Scholar 

  269. Roberson, R. E.: Effect of air drag on elliptic satellite orbits. ARS Journal 28, 90–96 (1958).

    Google Scholar 

  270. Roberson, R. E.: Air drag effect on a satellite orbit described by difference equations in the revolution number. Quart. Appl. Math. 26, 131–136 (1958).

    MathSciNet  Google Scholar 

  271. Williams, H. E.: The effect of drag on elliptic orbits. Adv. in Astronaut. Sci., Bd. 3, S. 35/1–10 (1958).

    Google Scholar 

  272. Baker, R. M. L. jr.: Application of astronomical perturbation techniques to the return of space vehicles. ARS Journal 29, 207–211 (1959).

    Google Scholar 

  273. Low, G. M.: Nearly circular transfer trajectories for descending satellites. NASA Tech. Rep. R-3 (1959).

    Google Scholar 

  274. Michielsen, H. F.: Orbit decay and prediction of the motion of artificial satellites. Adv. in Astronaut. Sci., Bd. 4, S. 255–310 (1959).

    Google Scholar 

  275. Rowell, L. N. und M. C. Smith: Secular variation in the inclination of the orbit of the earth satellite ( 1957 /3) and air drag. X. Kongr. Internat. Astronaut. London, 1959, Bd. I, S. 225–227.

    Google Scholar 

  276. Sterne, Th. E.: Effect of the rotation of a planetary atmosphere upon the orbit of a close satellite. ARS Journal 29, 777–782 (1959).

    Google Scholar 

  277. Gedeon, G. S.: Determination of the characteristics of rapidly decaying orbits. Adv. in Astronaut. Sci., Bd. 6, S. 458–472 (1960).

    Google Scholar 

  278. Batrakov, Yu. V. und V. P. Proskurin: Perturbations in the orbits of artificial satellites caused by air resistance. Artificial Earth Satellites 3, 56–66 (1961).

    Google Scholar 

  279. Braunbeck, W.: Das Satelliten-Paradoxon. Weltraumfahrt 12, 138–140 (1961).

    Google Scholar 

  280. El’yasberg, P. E.: Secular variations in orbit element as a function of air resistance. Artificial Earth Satellites 3, 76–84 (1961).

    Google Scholar 

  281. Kovalevsky, J.: Aspects analytiques du problème des perturbations d’un satellite artificiel. Astronaut. Acta 7, 376–389 (1961).

    MathSciNet  Google Scholar 

  282. Vincent, Th. L.: Satellite life duration. ARS Journal 31, 1015–1018 (1961).

    Google Scholar 

  283. Billik, B.: Survey of current literature on satellite lifetimes. ARS Journal 32, 1641–1650 (1962).

    MATH  Google Scholar 

  284. Crisp, J. D. C.: The dynamics of supercircular multiple-pass atmospheric braking. Astronaut. Acta 8, 1–27 (1962).

    Google Scholar 

  285. Karrenberg, H. K. u. a.: Variation of satellite position with uncertainities in the mean atmospheric density. ARS Journal 32, 576–582 (1962).

    MATH  Google Scholar 

  286. Kork, J.: Satellite lifetimes in elliptic orbits. J. Aero. Sci. 29, 1273–1290, 1299 (1962).

    Google Scholar 

  287. Parsons, W. D.: Orbit decay characteristics due to drag. ARS Journal 32, 1876–1881 (1962).

    MATH  Google Scholar 

  288. Poor, J. G. and R. W. Dix: Vehicle dynamics considerations at parabolic velocities. ARS Journal 32, 1888–1891 (1962).

    Google Scholar 

  289. Brundin, C. L.: Effects of charged particles on the motion of an earth satellite. AIAA Journal 1, 2529–2538 (1963).

    Article  Google Scholar 

  290. Citron, S. J.: Satellite lifetimes under the influence of continuous thrust, atmospheric drag and planet oblateness. AIAA Journal 1, 1355–1360 (1963).

    Article  Google Scholar 

  291. Kalil, F.: Effect of an oblate rotating atmosphere on the eccentricity, semi-major axis, and period of a close earth satellite. AIAA Journal 1, 1872–1878 (1963).

    Article  MATH  Google Scholar 

  292. Abdelkader, M. A.: Approximate orbits of resisted satellites. Astronaut. Acta 10, 328–338 (1964).

    MathSciNet  Google Scholar 

  293. Denham, W. F. and A. F. Bryson jr.: Optimal programming problems with inequality constraints II: Solution by steepest-ascent. AIAA Journal 2, 25–34 (1964).

    Article  MathSciNet  Google Scholar 

  294. Lubowe, A. G.: Drag perturbations in low eccentricity orbits. Astronaut. Acta 11, 189–195 (1965).

    Google Scholar 

  295. Lawden, D. F.: Entry into circular orbits —1. J. Brit. Interplanet. Soc. 10, 5–17 (1951).

    Google Scholar 

  296. Lawden, D. F.: Inter-orbital transfer of a rocket. III. Kongr. Internat. Astronaut. Stuttgart, 1952, S. 146–161.

    Google Scholar 

  297. Lawden, D. F.: The calculation of orbits. J. Brit. Interplanet. Soc. 14, 204–214 (1955).

    Google Scholar 

  298. Ehricke, K. A.: The satelloid. Astronaut. Acta 2, 63–100 (1956).

    Google Scholar 

  299. Lawden, D. F.: Transfer between circular orbits. ARS Journal 26, 555–558 (1956).

    Google Scholar 

  300. Fried, B. D.: On the powered flight trajectory of an earth satellite. ARS Journal 27, 641–643 (1957).

    Google Scholar 

  301. Benney, D. J.: Escape from a circular orbit using tangential thrust. ARS Journal 28, 167–169 (1958).

    Google Scholar 

  302. Dobrowalski, A.: Micrithrust maneuver capabilities. Adv. in Astronaut. Sci., Bd. 3, S. 18/1–14 (1958).

    Google Scholar 

  303. Kelber, C. C.: Next: Maneuverable satellites. Adv. in Astronaut. Sci., Bd. 3, S. 17/1–18 (1958).

    Google Scholar 

  304. Lawden, D. F.: Optimal escape from a circular orbit. Astronaut. Acta 4, 218–233 (1958).

    Google Scholar 

  305. Vargo, L. G.: Optimal transfer between coplanar terminals in a gravitational field. Adv. in Astronaut. Sci., Bd. 3, S. 20/1–9 (1958).

    Google Scholar 

  306. Perkins, F. M.: Flight mechanics of low-thrust spacecraft. J. Aero. Sci. 26, 291–297 (1959).

    MATH  Google Scholar 

  307. Traenkle, C. A.: Optimal programming and control of satellite orbits. Z. Flugwiss. 7, 305–313 (1959).

    Google Scholar 

  308. Brunk, W. E.: Transfer between noncoplanar orbits without minimum bvelocity requirements. Adv. in Astronaut. Sci., Bd. 7, S. 111–124 (1960).

    Google Scholar 

  309. DeBra, D. B. and B. H. Gundel: Circularization of elliptic orbits. Adv. in Astronaut. Sci., Bd. 6, S. 536–555 (1960).

    Google Scholar 

  310. Godal, Th.: Conditions of compatibility of terminal positions and velocities. XI. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. I, S. 40 11.

    Google Scholar 

  311. Lawden, D. F.: Optimal programme for correctional manoeuvres. Astronaut. Acta 6, 195–205 (1960).

    Google Scholar 

  312. Long, R. S.: Transfer between non-coplanar elliptical orbits. Astronaut. Acta 6, 167–178 (1960).

    Google Scholar 

  313. Munick, H. u. a.: Analytic solutions to several optimum orbit transfer problems. XI. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. I, S. 423430.

    Google Scholar 

  314. Rider, L.: Ascent from inner circular to outer co-planar elliptic orbits. ARS Journal 30, 254–258 (1960).

    MATH  Google Scholar 

  315. Roberson, R. E.: Path control for satellite rendezvous. Adv. in Astronaut. Sci., Bd. 6, S. 192–228 (1960).

    Google Scholar 

  316. Soule, P. W.: Rendezvous with satellites in elliptical orbits with low eccentricity. Adv. in Astronaut. Sci., Bd. 7, S. 138–147 (1960).

    Google Scholar 

  317. Ting, Lu: Optimum orbital transfer by several impulses. Astronaut. Acta 6, 256–265 (1960).

    Google Scholar 

  318. Altman, S. P. and J. S. Pistiner: Hodograph analysis of the orbital transfer problem for coplanar nonaligned elliptical orbits. ARS Journal 31, 1217–1225 (1961).

    MATH  Google Scholar 

  319. Altman, S. P. and J. S. Pistiner: A new orbital rendezvous guidance concept and its mechanization. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 254–272.

    Google Scholar 

  320. Breakwell, J. V. u. a.: Researches in interplanetary transfer. ARS Journal 31, 201–208 (1961).

    Google Scholar 

  321. Bruce, R. W.: Satellite orbit sustaining techniques. ARS Journal 31, 1237–1241 (1961).

    Google Scholar 

  322. Carstens, J. P. and T. N. Edelbaum: Optimum maneuvers for launching satellites into circular orbits of arbitrary radius and inclination. ARS Journal 31, 943–949 (1961).

    MATH  Google Scholar 

  323. Faulders, C. R.: Minimum time steering programs for orbital transfer with low-thrust rockets. Astronaut. Acta 7, 35–49 (1961).

    MathSciNet  Google Scholar 

  324. Haynes, G. W.: The calculus of variations approach to the general optimum impulsive transfer problem. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 299–316.

    Google Scholar 

  325. Houbolt, J. C.: Problems and potentialities of space rendezvous. Astronaut. Acta 7, 406–429 (1961).

    Google Scholar 

  326. Lass, H. and J. Lorell: Low acceleration takeoff from a satellite orbit. ARS Journal 31, 24–28 (1961).

    MATH  Google Scholar 

  327. Nason, M. L.: A terminal guidance law wich achieves collision based on Coriolis-balance techniques. Adv. in Astronaut. Sci., Bd. 8, S. 439–461 (1961).

    Google Scholar 

  328. Smith, F. T.: Optimization of multistage orbit transfer processes by dynamic programming. ARS Journal 31, 1553–1559 (1961).

    MATH  Google Scholar 

  329. Traenkle, C. A.: Layout of satellite ferry operation. Z. Flugwiss. 9, 334–341 (1961).

    Google Scholar 

  330. Traenkle, C. A.: Ferry operation with elliptic satellite orbits. Z. Flugwiss. 9, 407–417 (1961).

    MATH  Google Scholar 

  331. Young, J. W. u. a.: Guidance of a space vehicle to a desired point on the earth’s surface. Adv. in Astronaut. Sci., Bd. 8, 5. 46–474 (1961).

    Google Scholar 

  332. Dierstein, R.: Aufstiegs- and Übergangsbahnen. WGL-Lehrgang fur Raumfahrttechnik (München 1962) Bd. II, 16–1/22.

    Google Scholar 

  333. Eckel, K.: Optimum transfer between non-coplanar elliptical orbits. Astronaut. Acta 8, 177–192 (1962).

    Google Scholar 

  334. Fosdick, G. E. and M. L. Anthony: Three-dimensional pulse optimization for vehicles desorbiting from circular orbits. Astronaut. Acta 8, 343–375 (1962).

    Google Scholar 

  335. Gobetz, F. W.: Optimal variable-thrust transfer of a power-limited rocket between neighboring circular orbits. ARS Journal 32, 339–343 (1962).

    Google Scholar 

  336. Horner, J. M.: Optimum two-impulse transfer between arbitrary coplanar terminals. ARS Journal 32, 95–96 (1962).

    Google Scholar 

  337. Jantscher, H. N. u. a.: Minimum energy analysis for the general problem of rendezvous in earth orbital space. ARS Journal 32, 292–294 (1962).

    MATH  Google Scholar 

  338. Jurovics, S. A. and J. E. McIntyre: The adjoint method and its application to trajectory optimization. ARS Journal 32, 1354–1358 (1962).

    MATH  Google Scholar 

  339. Lass, H. and C. B. Solloway: Motion of a satellite under the influence of a constant normal thrust. ARS Journal 32, 97–100 (1962).

    MATH  Google Scholar 

  340. Lawden, D. F.: Optimal intermediate-thrust arcs in a gravitational field. Astronaut. Acta 8, 106–123 (1962).

    Google Scholar 

  341. Lieberman, S. I.: Rendezvous acceptability regions based on energy considerations. ARS Journal 32, 287–290 (1962).

    MATH  Google Scholar 

  342. London, H. S.: Change of satellite orbit plane by aerodynamic maneuvering. J. Aero. Sci. 29, 323–332 (1962).

    MATH  Google Scholar 

  343. Melbourne, W. G. and C. G. Sauer jr.: Optimum thrust programs for power-limited propulsion systems. Astronaut. Acta 8, 205–227 (1962).

    Google Scholar 

  344. Munick, H.: Optimum orbital transfer using N-impulses. ARS Journal 32, 1347–1350 (1962).

    MATH  Google Scholar 

  345. Regan, F. J.: Comment on an orbital hodograph analysis by Altman and Pistiner. ARS Journal 32, 113–114 (1962).

    Google Scholar 

  346. Roberson, R. E.: An intermittent orbit sustaining technique. Astronaut. Acta 8, 42–48 (1962).

    Google Scholar 

  347. Weiss, D. C.: Maneuvring technique for changing the plane of circular orbits with minimum fuel expenditure. J. Aero. Sci. 29, 368–369 (1962).

    Google Scholar 

  348. Anthony, M. L. and G. E. Fosdick: Three-dimensional pulse optimization for vehicles disorbiting from elliptical orbits. Astronaut. Acta 9, 81–106 (1963).

    Google Scholar 

  349. Barrar, R. B.: An analytic proof that the Hohmann-type transfer is the true minimum two-impulse transfer. Astronaut. Acta 9, 1–11 (1963).

    Google Scholar 

  350. Barrar, R. B.: Two-impulse transfer vs. one-impulse transfer: analytic theory. AIAA Journal 1, 65–68 (1963).

    Article  MATH  Google Scholar 

  351. Billik, B. H. and C. M. Price: Preferred schemes for multiple orbit transfer. AIAA Journal 1, 1858–1861 (1963).

    Article  Google Scholar 

  352. Bryson, A. E. jr. u. a.: Optimal programming problems with inequality constraints. I: Necessary conditions for extremal solutions. AIAA Journal 1, 2544–2550 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  353. Eckel, K.: Optimum transfer in a central force field with n impulses. Astronaut. Acta 9, 302–324 (1963).

    Google Scholar 

  354. Eckel, K.: Numerical solutions of non-coaxial optimum transfer problems. J. Astronaut. Sci. 10, 82–92 (1963).

    Google Scholar 

  355. Fimple, W. R.: An improved theory of the use of high- and low-thrust propulsion in combination. J. Astronaut. Sci. 10, 107–113 (1963).

    Google Scholar 

  356. Gobetz, F. W.: Optimum transfers between hyperbolic asymptotes. AIAA Journal 1, 2034–2041 (1963).

    Article  Google Scholar 

  357. Hanson, J. N.: A simple method for approximating the optimal trajectory. AIAA Journal 1, 1936–1938 (1963).

    Article  MathSciNet  Google Scholar 

  358. Hinz, H. K.: Optimal low-thrust near-circular orbital transfer. AIAA Journal 1, 1367–1371 (1963).

    Article  Google Scholar 

  359. Kelley, H. J.: Singular extremals in Lawden’s problem of optimal rocket flight. AIAA Journal 1, 1578–1580 (1963).

    Article  Google Scholar 

  360. Kooy, J. M. J.: On ascent guidance for rendezvous. Astronaut. Acta 9, 140–166 (1963).

    Google Scholar 

  361. McCue, G. A.: Optimum two-impulse orbital transfer and rendezvous between inclined elliptical orbits. AIAA Journal 1, 1865–1872 (1963).

    Article  Google Scholar 

  362. Moskowitz, S. E.: On the accuracy of approximate thrust steering schedules in optimal correctional maneuvers. Astronaut. Acta 9, 20–30 (1963).

    Google Scholar 

  363. Sconzo, P.: An astronomical approach to the problem of satellite rendezvous. Astronaut. Acta 9, 367–370 (1963).

    Google Scholar 

  364. Ting, Lu and M. Pierucci: Optimum launching of a satellite by two impulses of unequal specific impulse. Astronaut. Acta 9, 174–183 (1963).

    Google Scholar 

  365. Wang, K.: Minimum time transfer between coplanar, circular orbits by two impulses and the propulsion requirements. Astronaut. Acta 9, 12–19 (1963).

    Google Scholar 

  366. Zee, C.H.: Low-thrust oscillatory spiral trajectory. Astronaut. Acta 9, 201–207 (1963).

    Google Scholar 

  367. Zee, C.-H.: Low constant tangential thrust spiral trajectories. AIAA Journal 1, 1581–1583 (1963).

    Article  MATH  Google Scholar 

  368. Zee, C.-H.: Effect of finite thrusting time in orbital maneuvers. AIAA Journal 1, 60–64 (1963).

    Article  Google Scholar 

  369. Auelmann, R. R.: Trajectories with constant normal force starting from a circular orbit. AIAA Journal 2, 561–563 (1964).

    Article  MATH  Google Scholar 

  370. Billik, B. H.: Some optimal low-acceleration rendezvous maneuvers. AIAA Journal 2, 510–516 (1964).

    Article  MATH  Google Scholar 

  371. Edelbaum, Th. N.: Optimum low-thrust rendezvous and station keeping. AIAA Journal 2, 1196–1201 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  372. Grabin, C.: Docking dynamics for rigid-body spacecraft. AIAA Journal 2, 5–12 (1964).

    Article  Google Scholar 

  373. Hempel, P. und J. Tschauner: Über Beschleunigungsprogramme minimaler Übergangsenergie für das Rendezvous-Manöver. Astronaut. Acta 10, 221–237 (1964).

    Google Scholar 

  374. Lee, G.: An analysis of two-impulse orbital transfer. AIAA Journal 2, 1767–1773 (1964).

    Article  MATH  Google Scholar 

  375. McGill, R. und P. Kenneth: Solution of variational problems by means of a generalized Newton-Raphson operator. AIAA Journal 2, 1761–1766 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  376. Metzger, R.: Anwendung des Pontrjaginschen Maximumprinzips auf Rendezvousprobleme in der Raumfahrt. Jahrbuch 1964 der WGLR, S. 233–237.

    Google Scholar 

  377. Peterson, E. L.: Methods and application of optimization techniques. AGARDograph 92 (Okt. 1964 ), S. 109–162.

    Google Scholar 

  378. Smith, F. T.: The application of dynamic programming to orbit transfer processes. AGARDograph 92 (Okt. 1964 ), S. 22–78.

    Google Scholar 

  379. Tschauner, J. und P. Hempel: Optimale Beschleunigungsprogramme für das Rendezvous-Manöver. Astronaut. Acta 10, 296–307 (1964).

    Google Scholar 

  380. Vinh, N. X.: A property of cotangential elliptical transfer orbits. AIAA Journal 2, 1841–1844 (1964).

    Article  MATH  Google Scholar 

  381. Anthony, M. L. und F. T. Sasaki: Rendezvous problem for nearly circular orbits. AIAA Journal 3, 1666–1673 (1965).

    Article  Google Scholar 

  382. Bruce, R. W.: Combined aerodynamic-propulsive orbital plane change maneuver. AIAA Journal 3, 1286–1289 (1965).

    Article  Google Scholar 

  383. Busemann, A.: Minimalprobleme der Luft- und Raumfahrt. Z. Flugwiss. 13, 401–411 (1965).

    Google Scholar 

  384. Conrad, D. A.: Minimum fuel closed loop translation. AIAA Journal 3, 952–954 (1965).

    Article  Google Scholar 

  385. Edelbaum, Th. N.: Optimum power-limited orbit transfer in strong gravity fields. AIAA Journal 3, 921–925 (1965).

    Article  MathSciNet  Google Scholar 

  386. Johnson, D. P.: Perturbation solutions for low-thrust rocket trajectories. AIAA Journal 3, 1934–1936 (1965).

    Article  Google Scholar 

  387. Marchai, C.: Transferts optimaux entre orbits elliptiques coplanaires (durée indifférente). Astronaut. Acta 11, 432–445 (1965).

    Google Scholar 

  388. Marec, J.-P.: Transferts orbitaux économiques. Recherche Aérospatiale Nr. 105, 11–21 (1965).

    Google Scholar 

  389. McCue, G. A. und D. F. Bender: Numerical investigation of minimum impulse orbital transfer. AIAA Journal 3, 2328–2334 (1965).

    Article  Google Scholar 

  390. Moyer, H. G.: Minimum impulse coplanar circle-ellipse transfer. AIAA Journal 3, 723–726 (1965).

    Article  Google Scholar 

  391. Pfeiffer, C. G.: A dynamic programming analysis of multiple guidance corrections of a trajectory. AIAA Journal 3, 1674–1681 (1965).

    Article  Google Scholar 

  392. Pierucci, M.: Optimum orbital transfer by two impulses of unequal specific impulse. Astronaut. Acta 11, 268–270 (1965).

    Google Scholar 

  393. Robbins, H. M.: Optimality of intermediate-thrust arcs of rocket trajectories. AIAA Journal 3, 1094–1098 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  394. Tschauner, J. und P. Hempel: Rendezvous zu einem in elliptischer Bahn umlaufenden Ziel. Astronaut. Acta 11, 104–109 (1965).

    MATH  Google Scholar 

  395. Tschauner, J.: Neue Darstellung des Rendezvous bei elliptischer Zielbahn. Astronaut. Acta 11, 312–321 (1965).

    MATH  Google Scholar 

  396. Vaccaro, R. J. und M. J. Kirby: Rendezvous guidance of lifting aerospace vehicles. J. Spacecraft 2, 705–711 (1965).

    Article  Google Scholar 

  397. de Veubeke, B. Fraeijs: Canonical transformations and the thrust — coast — thrust optimal transfer problem. Astronaut. Acta 11, 271–282 (1965).

    MathSciNet  Google Scholar 

  398. Zehle, H.: Zur Berechnung von Abflugspiralen kleiner Schubbeschleunigung. Z. Flugwiss. 13, 385–387 (1965).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Friedr. Vieweg & Sohn GmbH, Braunschweig

About this chapter

Cite this chapter

Stümke, H. (1969). Flugleistungen der drehsymmetrischen Flugkörper. In: Grundzüge der Flugmechanik und Ballistik. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-07250-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-07250-8_5

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-06337-7

  • Online ISBN: 978-3-663-07250-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics