Advertisement

Flugleistungen der drehsymmetrischen Flugkörper

  • Hermann Stümke
Chapter
  • 120 Downloads

Zusammenfassung

Die ersten beiden Abschnitte dieses Kapitels behandeln die Antriebsbahn (5.1) bzw. die Freiflugbahn (5.2), S. 356, von Geschoß und Rakete einschließlich des Problems des Wiedereintritts von irgendwelchen Flugkörpern, insbesondere von künstlichen Erdsatelliten, in die Erdatmosphäre (5.2.23), S. 369. Im folgenden Abschnitt 5.3, S. 372, wird die Keplerbewegung einbezogen und die Differentialgleichungen der Bahnelemente bei beliebigen Störungen auf anschaulichem Wege hergeleitet. Der Einfluß der Erdabplattung auf die Satellitenbahn (5.4), S. 396, die Lebensdauer eines Satelliten bei Berücksichtigung des Luftwiderstandes (5.5), S. 407, und der Übergang von einer Keplerbahn in eine andere mit Hilfe von Zusatzimpulsen (5.6), S. 413, sind im Grunde nur spezielle Anwendungen der Störungstheorie. Wegen der außerordentlich intensiven Bearbeitung, die diese drei Probleme in den letzten Jahren erfahren haben, ist jedoch ihrer Einführung jeweils ein besonderer Abschnitt vorbehalten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kap. V

a) Bücher

  1. [5-001]
    Bauschinger, J.: Die Bahnbestimmung der Himmelskörper. Leipzig, 1906.Google Scholar
  2. [5-002]
    Charbonnier, P.: Balistique intérieure. Paris, 1908.Google Scholar
  3. [5-003]
    Cranz, C.: Lehrbuch der Ballistik. Bd. I. Äußere Ballistik. Berlin, 1925. Bd. 2. Innere Ballistik. 1926.Google Scholar
  4. [5-004]
    Hohmann, W.: Die Erreichbarkeit der Himmelskörper. München, 1925.Google Scholar
  5. [5-004a]
    Bollé, E.: Innere Ballistik. In F. Auerbach und W. Hort (Herausg.): Handbuch der physikalischen und technischen Mechanik. Bd. II, 1, S. 276–325. Leipzig, 1928.Google Scholar
  6. [5-005]
    Oberth, H.: Wege zur Raumschiffahrt. München, 1928.Google Scholar
  7. [5-006]
    Rosser, J. B. u. a.: Mathematical theory of rocket flight. New York, 1947.Google Scholar
  8. [5-007]
    Sänger, R.: Ballistische Störungstheorie unter besonderer Berücksichtigung der Wettereinflüsse. Basel, 1949.Google Scholar
  9. [5-008]
    N.N.: Oerlikon Taschenbuch, Zürich-Oerlikon, 1956. ( Artikel über innere und äußere Ballistik, Meßtechnik und Sonderwaffen).Google Scholar
  10. [5-009]
    Royal Aeronautical Society u. a.: High altitude and satellite rockets. (Symposium Cranfield, 1957). New York, 1959.Google Scholar
  11. [5-009a]
    Stumpff, K.: Himmelsmechanik. Bd. I (1959), Bd. II. Berlin, 1965.Google Scholar
  12. [5-010]
    Stutz, W.: Schießlehre. Basel, 1959.Google Scholar
  13. [5-011]
    Berman, A. I.: The physical principles of astronautics. New York, 1961.Google Scholar
  14. [5-012]
    Brouwer, D. und G. M. Clemence: Methods of celestial mechanics. New York, 1961.Google Scholar
  15. [5-013]
    Ehricke, K A.: Space flight. I. Environment and celestial mechanics. II. Dynamics. III. Operations. New York, 1961.Google Scholar
  16. [5-014]
    Morrow, C. T. u. a. (Herausg.): Ballistic missile and space technology. New York, 1961.Google Scholar
  17. [5-015]
    Duncan, R. C.: Dynamics of atmospheric entry. New York, 1962.Google Scholar
  18. [5-016]
    Leitmann, G. (Herausg.): Optimization techniques. With application to aerospace systems. New York, 1962.Google Scholar
  19. [5-017]
    Moulton, F. R.: Methods in exterior ballistics. New York, 1962.Google Scholar
  20. [5-018]
    Nelson, W. C. und E. E. Loft: Space mechanics. Englewood Cliffs, N. J., 1962.Google Scholar
  21. [5-019]
    Roberson, R. E. und J. S. Farrior (Herausg.): Guidance and control. New York, 1962.Google Scholar
  22. [5-020]
    Salmon, M.: Principes du vol balistique et spatial. Paris, 1962.Google Scholar
  23. [5-021]
    Bohrmann, A.: Bahnen künstlicher Satelliten. Mannheim, 1963.Google Scholar
  24. [5-021a]
    Brüning, G.: Flugmechanische Probleme an Raumfahrt- und Wiedereintrittsflugkörpern. 2. Lehrgang für Raumfahrttechnik (Braunschweig 1963) Bd. II, 301–1/153.Google Scholar
  25. [5-022]
    Lawden, D. F.: Optimal trajectories for space navigation. London, 1963.Google Scholar
  26. [5-023]
    Leondes, C. T. (Herausg.): Guidance and control of aerospace vehicles. New York, 1963.Google Scholar
  27. [5-024]
    Loh, W. H. T.: Dynamics and thermodynamics of planetary entry. Englewood Cliffs, N. J., 1963.Google Scholar
  28. [5-026]
    Petersen N. V. (Herausg.): Advances in astronautical sciences. Bd. 16, Teil I und II: Space rendezvous, rescues and recovery. New York, 1963.Google Scholar
  29. [5-027]
    Riley, F. E. und J. D. Sailor: Space systems engineering. New York, 1963.Google Scholar
  30. [5-028]
    Rössger, E. und H. Zehle: Grundlagen der Raumfahrzeugführung. Köln, 1963.Google Scholar
  31. [5-029]
    White, J. F. (Herausg.): Flight performance handbook for powered flight operations, flight mechanics and space vehicle design, empirical formula, analytic approximations and graphical aids. London, 1963.Google Scholar
  32. [5-030]
    Wolverton, R. W.: Flight performance handbook for orbital operations. New York, 1963.Google Scholar
  33. [5-031]
    Battin, R. H.: Astronautical guidance. New York, 1964.Google Scholar
  34. [5-032]
    Gantmakher, F. R. und L. M. Levin: The flight of uncontrolled rockets. Oxford, 1964.Google Scholar
  35. [5-033]
    King-Hele, D.: Theory of satellite orbits in an atmosphere. London, 1964.Google Scholar
  36. [5-034]
    Koelle, H. H.: Theorie und Technik der Raumfahrzeuge. Stuttgart, 1964.Google Scholar
  37. [5-035]
    Kurnosova, L. V. (Herausg.): Artificial earth satellites. Bd. 16. New York, 1964. ( Zahlreiche Artikel zum Rückkehr- bzw. Rendezvous-Problem).Google Scholar
  38. [5-036]
    Langford, R. C. und Ch. J. Mundo (Herausg.): Guidance and control II. New York, 1964.Google Scholar
  39. [5-037]
    Szebehely, V. G. (Herausg.): Celestial mechanics and astrodynamics. New York, 1964.Google Scholar
  40. [5-038]
    Groves, G. V. (Herausg.): Dynamics of rockets and satellites. Amsterdam, 1965.Google Scholar
  41. [5-039]
    Seigel, A. E.: The theory of high speed guns. AGARDograph 91 (Mai 1965 ).Google Scholar
  42. [5-040]
    Vertregt, M.: Principles of astronautics. New York, 1965.Google Scholar
  43. [5-100a]
    Love, A. E. H. und F. R. Pidduck: Lagrange’s ballistic problem. Phil. Trans. Roy. Soc. A 222, 167–226 (1922).Google Scholar
  44. [5-100b]
    Thornhill, C. K.: A new special solution to the complete problem of the internal ballistics of guns. AGARD Rep. 550 (1966).Google Scholar
  45. [5-101]
    Krause, H. G. L.: Allgemeine Theorie der Stufenraketen. Weltraumfahrt 4, 52–59 (1953).Google Scholar
  46. [5-102]
    Ehricke, K. A.: Ascent of orbital vehicles. Astronaut. Acta 2, 175–190 (1956).Google Scholar
  47. [5-103]
    Perkins, F. M.: Flight mechanics of ascending satellite vehicles. ARS Journal 26, 352–358 (1956).Google Scholar
  48. [5-104]
    Reece, J. W. u. a.: Ballistic missile performance. ARS Journal 26, 251–255 (1956).Google Scholar
  49. [5-105]
    West, C. D.: Boost phase trajectory analysis techniques. ARS Journal 27, 527–533 (1957).Google Scholar
  50. [5-106]
    Koelle, H. H.: Über eine Näherungsmethode zur Berechnung von Kreisbahnraketen. Raketentechnik und Raumfahrtforschung 2, 8–12 (1958).Google Scholar
  51. [5-107]
    Koelle, H. H.: On the development of orbital techniques. IX. Kongr. Internat. Astronaut. Amsterdam, 1958, Bd. II, S. 702–746.Google Scholar
  52. [5-108]
    Scholze, O.: Einflußgrößen ballistischer Fern-Flugkörper. Raketentechnik und Raumfahrtforschung 2, 2–8 (1958).Google Scholar
  53. [5-109]
    Singer, S. F. und R. C. Wentworth: A method for calculating impact points of ballistic rockets. ARS Journal 27, 407–409 (1957) und 28, 684–687 (1958).Google Scholar
  54. [5-110]
    Struble, R. A. u. a.: The trajectory of a rocket with thrust. ARS Journal 28, 472–478 (1958).Google Scholar
  55. [5-111]
    Veubeke, Fraeijs de, B.: Le problème du maximum de rayon d’action dans un champ de gravitation uniforme. Astronaut. Acta 4, 1–14 (1958).MathSciNetGoogle Scholar
  56. [5-112]
    Weisbord, L.: A generalized optimization procedure for N-staged missiles. ARS Journal 28, 164–167 (1958).Google Scholar
  57. [5-113]
    Froehlich, J. E. und A. R. Hibbs: Ballistics of the Explorer. In: W. C. Nelson (Herausg.): Selected topics on ballistics, S. 59–73. AGARD. New York, 1959.Google Scholar
  58. [5-114]
    Hoelker, R. F.: Launching of Explorer I. In: W. C. Nelson (Herausg.): Selected topics on ballistics, S. 74–87. AGARD. New York, 1959.Google Scholar
  59. [5-115]
    Kelley, A. J.: Effect of thrust termination process upon range dispersion of a ballistic missile. ARS Journal 29, 432–440 (1959).Google Scholar
  60. [5-116]
    Scholze, O.: Graphische Ermittlung der Haupteinfluß- und Vorentwurfsgrößen von Flugkörpern. Raketentechnik und Raumfahrtforschung 3, 36–44 (1959).Google Scholar
  61. [5-117]
    Traenkle, C. A.: Mechanics of the power and launching phase for missiles and satellites. Ing. Archiv 28, 335–356 (1959).zbMATHCrossRefGoogle Scholar
  62. [5-118]
    Chase, R. L.: Multistage rocket staging optimization. Adv. in Astronaut. Sci., Bd. 6, S. 621–629 (1960).Google Scholar
  63. [5-119]
    Froehlich, J. E.: Capabilities of multistaged chemical rocket systems. Astronaut. Acta 6, 311–321 (1960).Google Scholar
  64. [5-120]
    Koelle, H. H.: On the optimum size of orbital carrier vehicles based on overall economy. IX. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. I, S. 365–376.Google Scholar
  65. [5-121]
    Kulakowski, L. J. und R. T. Stancil: Rocket boost trajectories for maximum burnout velocity. ARS Journal 30, 612–623 (1960).zbMATHGoogle Scholar
  66. [5-122]
    Molitz, H.: Der Einfluß des Abkippeffekts auf die Schußweite von Raketen. Wehrtech. Monatshefte 57, 410–419 (1960).Google Scholar
  67. [5-123]
    Stümke, H.: Flugleistungsberechnung unbemannter Raketen. In: K. Schütte und H. K. Kaiser (Herausg.): Handbuch der Astronautik, Bd. I, S. 80–109. Konstanz, 1960.Google Scholar
  68. [5-124]
    Ehlers, F. E.: Missile trajectories with linear time variation of the sine or tangent of the thrust angle. ARS Journal 31, 631–636 (1961).zbMATHGoogle Scholar
  69. [5-125]
    Schulz, W.: Ein Beitrag zur Theorie der Stufenraketen. Z. Flugwiss. 9, 394 401 (1961).Google Scholar
  70. [5-126]
    Thackwell, H. L. jr. und J. A. Vandenkerkhove: Optimum staging of solidpropellant rocket vehicles. Astronaut. Acta 7, 190–202 (1961).Google Scholar
  71. [5-127]
    Veubeke, Fraeijs de, B. M.: L’étagement optimum des groupes de fusées en fonctionnement parallèle. Astronaut. Acta 7, 359–375 (1961).Google Scholar
  72. [5-128]
    Cooper, R. S.: Performance of optimized multistage rockets. J. Aero. Sci. 29, 1339–1343 (1962).Google Scholar
  73. [5-129]
    Pollak, R. J.: Rapid determination of the interactions between the ballistic rocket and its trajectory. ARS Journal 32, 42–51 (1962).Google Scholar
  74. [5-130]
    Fan, L.-T. und C. Wan: Weight minimization of a step rocket by the discrete maximum principle. J. Spacecraft 1, 123–125 (1964).CrossRefGoogle Scholar
  75. [5-131]
    Kiessling, W.: Einfluß spezieller Bedingungen beim Aufstieg auf die Auslegungsdaten einer Höhenforschungsrakete. Jahrbuch 1964 der WGLR, S. 245–252.Google Scholar
  76. [5-132]
    Koelle, D. E.: Zur Definition und Größe der Nutzlast bei Raumtransporter-Projekten. Raumfahrtforschung 8, 155–160 (1964).Google Scholar
  77. [5-133]
    Thomae, H. F.: A technique for optimization of ascent trajectories and propellant loadings of multistage space vehicles. Raumfahrtforschung 8, 115–123 (1964).Google Scholar
  78. [5-134]
    Cavoti, C. R.: Optimization of multistage processes. J. Spacecraft 2, 94–97 (1965).CrossRefGoogle Scholar
  79. [5-135]
    Gray, J. S. and R. V. Alexander: Cost and weight optimization for multistage rockets. J. Spacecraft 2, 80–86 (1965).CrossRefGoogle Scholar
  80. [5-136]
    Zee, C.-H.: Powered flight trajectories of rockets under constant tangential thrust. J. Astronaut. Sci. 12, 1–6 (1965).Google Scholar
  81. [5-151]
    Lawden, D. F.: Minimal trajectories. J. Brit. Interplanet. Soc. 9, 179–186 (1950).Google Scholar
  82. [5-152]
    Lawden, D. F.: Optimal programming of rocket thrust direction. Astronaut. Acta 1, 41–56 (1955).MathSciNetGoogle Scholar
  83. [5-153]
    Lawden, D. F.: Optimum launching of a rocket into an orbit about the earth. Astronaut. Acta 1, 185–190 (1955).Google Scholar
  84. [5-154]
    Fried, B. D. und J. M. Richardson: Optimum rocket trajectories. J. Appl. Phys. 27, 955–961 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  85. [5-155]
    Miele, A.: Optimum burning program as related to aerodynamic heating for a missile traversing the earth’s atmosphere. ARS Journal 27, 1231–1240 (1957).Google Scholar
  86. [5-156]
    Bryson, A. E. und S. E. Ross: Optimum rocket trajectories with aerodynamic drag. ARS Journal 28, 465–469 (1958).Google Scholar
  87. [5-157]
    Leitmann, G.: Optimum thrust direction for maximum range. J. Brit. Inter-planet. Soc. 16, 503–507 (1958).Google Scholar
  88. [5-158]
    Miele, A.: On the brachistochronic thrust program for a rocket-powered missile travelling in an isothermal medium. ARS Journal 28, 675–684 (1958).Google Scholar
  89. [5-159]
    Miele, A.: General variational theory of the flight paths of rocket-powered aircraft, missiles and satellite carriers. IX. Kongr. Internat. Astronaut. Amsterdam, 1958, Bd. II, S. 946–970 und Astronaut. Acta 4, 264–288 (1958).Google Scholar
  90. [5-160]
    Miele, A. und C. R. Cavoti: Optimum thrust programming along arbitrarily inclined rectilinear paths. Astronaut. Acta 4, 167–181 (1958).Google Scholar
  91. [5-161]
    Miele, A. und C. R. Cavoti: Generalized variational approach to the optimum thrust programming for the vertical flight of a rocket. Z. Flugwiss. 6, 69–77 und 102–109 (1958).zbMATHGoogle Scholar
  92. [5-162]
    Newton, R. R.: On the optimum trajectory of a rocket. J. Franklin Inst. 266, 155–187 ( 1958 I I ).MathSciNetCrossRefGoogle Scholar
  93. [5-163]
    Okhotsimskii, D. E. und T. M. Eneev: Some variation problems connected with the launching of artificial satellites of the earth. J. Brit. Interplanet. Soc. 16, 263–294 (1958).Google Scholar
  94. [5-164]
    Leitmann, G.: On a class of variational problems in rocket flight. J. Aero. Sci. 26, 586–591 (1959).MathSciNetzbMATHGoogle Scholar
  95. [5-165]
    Miele, A. und J. O. Capellari jr.: Dynamic programming for rockets. Z. Flugwiss. 7, 14–21 (1959).zbMATHGoogle Scholar
  96. [5-166]
    Traenkle, C. A.: Design parameters and optimization of missile trajectories. Z. Flugwiss. 7, 287–293 (1959).Google Scholar
  97. [5-167]
    Faulkner, F. D.: Complete elementary solution to some optimum trajectory problem. ARS Journal 31, 33–39 (1961).zbMATHGoogle Scholar
  98. [5-168]
    Leitmann, G.: An elementary derivation of the optimal control conditions. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 275–298.Google Scholar
  99. [5-169]
    Miele, A.: The relation between the Green’s theorem approach and the direct methods for extremal problems of a linear type. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 317–334.Google Scholar
  100. [5-170]
    Stancil, R. T. und L. J. Kulakowski: Rocket boost vehicle missions optimization. ARS Journal 31, 935–943 (1961).Google Scholar
  101. [5-171]
    Contensou, P.: Etude théorique des trajectoires optimales dans un champ de gravitation. Astronaut. Acta 8, 134–150 (1962).MathSciNetGoogle Scholar
  102. [5-171a]
    Leitmann, G.: The optimization of rocket trajectoires — A survey. In: Progress in the Astronautical Sciences. Bd. I, S. 145–213. Amsterdam, 1962.Google Scholar
  103. [5-17lb]
    Schnäbele, W.: Raketen- und Bahnoptimierung. WGL-Lehrgang für Raumfahrttechnik (München 1962), Bd. II, 18–1/21.Google Scholar
  104. [5-172]
    Lawden, D. F.: Analytical techniques for the optimization of rocket trajectories. Aeronaut. Quart. 14, 105–124 (1963).Google Scholar
  105. [5-172a]
    Lutz, O. (Herausg.): 2. Lehrgang für Raumfahrttechnik ( Braunschweig 1963 ), Bd. I. Mehrere Beiträge zur Frage der Bahnoptimierung.Google Scholar
  106. [5-173]
    Denham, W. F.: Range maximization of a surface-to-surface missile with in-flight inequality constreints. J. Spacecraft 1, 78–83 (1964).CrossRefGoogle Scholar
  107. [5-173a]
    Heermann, H. und Ph. Kretsinger: The minimum time problem. J. Astronaut. Sci. 11, 93–107 (1964).Google Scholar
  108. [5-174]
    Keller, J. L.: On minimum propellant paths for thrust limited rockets. Astronaut. Acta 10, 262–269 (1964).MathSciNetGoogle Scholar
  109. [5-175]
    Kelley, H. J.: A second variation test for singular extremals. AIAA Journal 2, 1380–1382 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  110. [5-176]
    Lawden, D. F.: Trajectory optimization for a rocket with a generalized thrust characteristic. Astronaut. Acta 10, 279–295 (1964).MathSciNetGoogle Scholar
  111. [5-177]
    Pines, S.: Constants of the motion for optimum thrust trajectories in a central force field. AIAA Journal 2, 2010–2014 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  112. [5-177a]
    Rosenbloom, A.: Application of optimization techniques. AGARDograph 92 (Okt. 1964 ), S. 1–21.Google Scholar
  113. [5-178]
    Schulz, W. und H.-K. Schulze: Die Methode des Dynamic Programming und ihre Anwendung auf Optimierungsaufgaben der Flugmechanik. Jahrbuch 1964 der WGLR, S. 238–244.Google Scholar
  114. [5-179]
    Standl, R. T.: A new approach to steepest-ascent trajectory optimization. AIAA Journal 2, 1365–1370 (1964).CrossRefGoogle Scholar
  115. [5-180]
    Bell, D. J.: Optimal trajectories and the accessory minimum problem. Aeronaut. Quart. 16, 205–220 (1965).Google Scholar
  116. [5-181]
    Halkin, H.: Optimal aerodynamic steering for anti-ICBM missiles. J. Astronaut. Sci. 12, 71–82 (1965).Google Scholar
  117. [5-182]
    Kopp, R. E. und H. G. Moyer: Necessary conditions for singular extremals. AIAA Journal 3, 1439–1444 (1965).zbMATHCrossRefGoogle Scholar
  118. [5-183]
    Mason, J. D. u. a.: A variational method for optimal staging. AIAA Journal 3, 2007–2012 (1965).CrossRefGoogle Scholar
  119. [5-184]
    Munick, H.: Goddard problem with bounded thrust. AIAA Journal 3, 1283–1285 (1965).MathSciNetCrossRefGoogle Scholar
  120. [5-185]
    Narjes, O.: Über die Bestimmung optimaler, singulärer Steuerungen mit Hilfe des Maximumsprinzips von Pontrjagin. Z. Flugwiss. 13, 252–254 (1965).Google Scholar
  121. [5-201]
    Fasella, E.: Tavole balistiche secondarie. Genua, 1901 (zitiert nach H. Athen [6–001]).Google Scholar
  122. [5-202]
    Slacci, F.: Sur un problème d’Alembert. Compt. Rend. Ac. Sci. 132, 11751178 und 133, 381–382 (1901).Google Scholar
  123. [5-202a]
    v. Eberhard, O.: Benutzung der Fasella-Tabellen zur stufenweisen Flugbahnberechnung unter Berücksichtigung der neuen Versuche über den Luftwiderstand ZAMM 11, 253–273 (1931).Google Scholar
  124. [5-203]
    Eckel, K.: Die ballistische Störungstheorie. Wehrtech. Monatshefte 52, 10–19, 45–51, 80–84 (1955).Google Scholar
  125. [5-204]
    Molitz, H.: Der Einfluß eines konstanten Windes auf die Bahn von Geschossen und Raketen. Wehrtech. Monatshefte 57, 258–268 (1960).Google Scholar
  126. [5-205]
    Schweikert, E.: Ballistischer Rechenschieber zur Bestimmung von Geschwindigkeiten und Flugzeiten für Flachbahnen. Wehrtech. Monatshefte 57, 467–475 (1960).Google Scholar
  127. [5-206]
    Curti, P.: Zur Graphik der Geschoßbahn. Wehrtech. Monatshefte 57, 334–349, 375–380 (1960), 58, 6–12 (1961), 60, 311–318, (1963).Google Scholar
  128. [5-221]
    Sanger, E. und I. Bredt: Ein Raketenantrieb für Langstreckenbomber. Dt. Luftfahrtforschung, UM 3538, 1944.Google Scholar
  129. [5-222]
    Stümke, H.: Zwei Flugbahnen des Gleiters A4b mit berichtigten Betriebsdaten (Beitrag zur Frage der zweckmäßigsten Flugart). Bericht Nr. 68/68 der Herresversuchsanstalt Peenemünde (1944).Google Scholar
  130. [5-223]
    Krause, H. G. L.: Strenge Integration der Bewegungsgleichung einer senkrecht aufsteigenden Rakete nach Brennschluß in der Atmosphäre. IV. Kongr. Internat. Astronaut. Zürich, 1953, S. 171–180.Google Scholar
  131. [5-224]
    Kaeppeler, H. J. und M. E. Kuebler: Die Rückkehr von geflügelten Geräten von Außenstations-Bahnen. V. Kongr. Internat. Astronaut. Innsbruck, 1954, S. 120–149.Google Scholar
  132. [5-225]
    Ehricke, K. A.: On the descent of winged orbital vehicles. Astronaut. Acta 1, 137–155 (1955).Google Scholar
  133. [5-226]
    Kaeppeler, H. J.: Über eine simultane analytische Integration der Bewegungsgleichungen eines geflügelten Gerätes im Überschallgleitflug. Astronaut. Acta 1, 166–170 (1955).MathSciNetGoogle Scholar
  134. [5-227]
    King-Hele, D. G.: The descent of an earth-satellite through the upper atmosphere. J. Brit. Interplanet. Soc. 15, 314–323 (1956).Google Scholar
  135. [5-228]
    Ferri, A. u. a.: The use of lift for re-entry from satellite trajectories. ARS Journal 27, 1184–1191 (1957).Google Scholar
  136. [5-229]
    Allen, H. J.: Hypersonic flight and the re-entry problem. J. Aero. Sci. 25, 217–227 (1958).Google Scholar
  137. [5-230]
    Allen, H. J. und A. J. Eggers jr.: A study of the motion and aerodynamic heating of ballistic missiles entering the earth’s atmosphere at high supersonic speeds. NACA Rep. 1381 (1958).Google Scholar
  138. [5-231]
    Baker, R. M. L. jr.: Enke’s method and variation of parameters as applied to re-entry trajectories. Adv. in Astronaut. Sci., Bd. 3, S. 36/1–10 (1958).Google Scholar
  139. [5-232]
    Bull, G. V. u. a.: Exit and re-entry problems. Aero/Space Eng. 17, 57–62 (Juni, 1958 ).Google Scholar
  140. [5-233]
    Eggers, A. J.: A comparative analysis of the performance of long-range hypervelocity vehicles. NACA Rep. 1382 (1958).Google Scholar
  141. [5-234]
    Roberson, R. E.: Oblateness correction to impact points of ballistic rockets. J. Franklin Inst. 266, 465–481 ( 1958 I I ).Google Scholar
  142. [5-235]
    Robinson, A. C. und A. J. Besonis: On the problems of re-entry into the earth’s atmosphere. Adv. in Astronaut. Sci., Bd. 3, S. 33/1–24 (1958).Google Scholar
  143. [5-236]
    Rosenberg, R. M.: On flight trajectories in the neighborhood of a known trajectory. J. Franklin Inst. 266, 109–128, ( 1958 I I ).CrossRefGoogle Scholar
  144. [5-237]
    Allen, H. J.: Some aerodynamic effects on long-range rocket craft. In: W. C. Nelsen (Herausg.): Selected topics on ballistics, S. 46–58. AGARD. New York, 1959.Google Scholar
  145. [5-238]
    Chapman, D. R.: An approximate analytical method for studying entry into planetary atmospheres. NASA Tech. Rep. R-11 (1959).Google Scholar
  146. [5-239]
    Lees, L. u. a.: Use of aerodynamic lift during entry into the earth’s atmosphere. ARS Journal 29, 633–641 (1959).Google Scholar
  147. [5-240]
    Nonweiler, T.: The motion of an earth satellite on re-entry to the atmosphere. IX. Kongr. Internat. Astronaut. Amsterdam, 1958, Bd. II, 5.842–864. Astronaut. Acta 5, 40–62 (1959).Google Scholar
  148. [5-241]
    Paige, H. W.: The technology of manned return from outer space. J. Franklin Inst. 267, 103–118 ( 1959 I ).CrossRefGoogle Scholar
  149. [5-242]
    Wheelon, A. D.: Free flight of a ballistic missile. ARS Journal 29, 915–926 (1959).Google Scholar
  150. [5-243]
    Chapman, D. R.: An analysis of the corridor and guidance requirements for supercircular entry into planetary atmospheres. NASA Tech. Rep. R-55 (1960) und X. Kongr. Internat. Astronaut. London, 1959, Bd. I, S. 254–267.Google Scholar
  151. [5-244]
    Loh, W. H. T.: Dynamics and thermodynamics of re-entry. J. Aero. Sci. 27, 748–762 (1960).MathSciNetzbMATHGoogle Scholar
  152. [5-245]
    Loh, W. H. T.: Minor circle flight for boost glide or orbital reentry vehicles. Adv. in Astronaut. Sci. Bd. 6, S. 536–555 (1960).Google Scholar
  153. [5-246]
    Becker, J. V. u. a.: Aerodynamics of trajectory control for reentry at escape speed. Astronaut. Acta 7, 334–358 (1961).Google Scholar
  154. [5-247]
    Berman, L. J.: Optimum soft landing trajectories. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 353–367.Google Scholar
  155. [5-248]
    Broglio, L.: Lois de similitude dans le calcul des trajectoires de rentrée et de l’ablation frontale des engins. Astronaut. Acta 7, 21–34 (1961).Google Scholar
  156. [5-249]
    Brun, E. A.: Considérations générales sur le problème de la rentrée. In: L. Broglio (Herausg.): Current Research in Astronaut. Sci., S. 296–321. New York, 1961.Google Scholar
  157. [5-250]
    Eggers, A. J. jr. und T. J. Wong: Motion and heating of lifting vehicles during atmosphere entry. ARS Journal 31, 1364–1375 (1961).Google Scholar
  158. [5-251]
    Loh, W. H. T.: A unified analytical solution for entry mechanics. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 337–352.Google Scholar
  159. [5-252]
    Maday, C. J.: Aerodynamic capture of a ballistic type vehicle travelling at hyperbolic speed. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 380–391.Google Scholar
  160. [5-253]
    Warden, R. V.: Ballistic re-entries with a varying W/cD A. ARS Journal 31, 208–213 (1961).Google Scholar
  161. [5-254]
    Wong, T. J. und R. E. Slye: The effect of lift on entry corridor depth and guidance requirements for the return lunar flight. NASA Tech. Rep. R-80 (1961).Google Scholar
  162. [5-255]
    Bate, R. R. und R. W. Johnson: Empirical formulas for ballistic re-entry trajectories. ARS Journal 32, 1882–1887 (1962).Google Scholar
  163. [5-256]
    Blum, R.: Re-entry trajectories: Flat earth approximation. ARS Journal 32, 616–620 (1962).zbMATHGoogle Scholar
  164. [5-257]
    Broglio, L.: On guidance and landing accuracy requirements in re-entry trajectories. Astronaut. Acta 8, 245–263 (1962).Google Scholar
  165. [5-258]
    Bryson, A. E. u. a.: Determination of lift or drag programs to minimize re-entry heating. J. Aero. Sci. 29, 420–430 (1962).MathSciNetzbMATHGoogle Scholar
  166. [5-259]
    Ferri, A. und Lu Ting: Practical aspects of re-entry problems. Astronaut. Acta 8, 63–81 (1962).Google Scholar
  167. [5-260]
    Hunziker, R. R.: Re-entry trajectories for impact prediction and radar acquisition. ARS Journal 32, 1261–1268 (1962).zbMATHGoogle Scholar
  168. [5-261]
    Levinsky, E. S.: Application of inequality constreints to varational problems of lifting re-entry. J. Aero. Sci. 29, 400–409 (1962).MathSciNetzbMATHGoogle Scholar
  169. [5-262]
    Loh, W. H. T.: Ballistic re-entry at small angles of inclination. ARS Journal 32, 718–721 (1962).zbMATHGoogle Scholar
  170. [5-263]
    Loh, W. H. T.: A second-order theory of entry mechanics into a planetary atmosphere. J. Aero. Sci. 29, 1210–1221, 1237 (1962).Google Scholar
  171. [5-264]
    Mandell, D. S.: Maneuvring performance of lifting re-entry vehicles. ARS Journal 32, 346–354 (1962).Google Scholar
  172. [5-265]
    Moulin, L.: Précisions réquises pour les trajectoires de retour d’engins spatiaux. XIII. Kongr. Internat. Astronaut. Varna, 1962, Bd. II, S. 523–554.Google Scholar
  173. [5-266]
    Tempelman, W. H.: Selected problems in optimum ballistic descent from orbit. Astronaut. Acta 8, 193–204 (1962).Google Scholar
  174. [5-267]
    Wang, K. und Lu Ting: Approximate solutions for re-entry trajectories with aerodynamic forces. Astronaut. Acta 8, 28–41 (1962).Google Scholar
  175. [5-268]
    Elms, R. V. jr.: Projectile range in excess of 180°. AIAA Journal 1, 2406–2408 (1963).CrossRefGoogle Scholar
  176. [5-269]
    Grant, F. C.: A theory of space probe entry under conditions of high mass loss. NASA TR 162 (1963).Google Scholar
  177. [5-269a]
    Hoppe, H.: Flugbahnen für Wiedereintrittskörper mit Auftriebsvermögen. 2. Lehrgang für Raumfahrttechnik (Braunschweig 1963) Bd. II, 302–1/28.Google Scholar
  178. [5-270]
    Loh, W. H. T.: Some exact analytical solutions of planetary entry. AIAA Journal 1, 836–842 (1963).zbMATHCrossRefGoogle Scholar
  179. [5-271]
    Shen, Y. C.: Series solution of equations for re-entry vehicles with variable lift and drag coefficients. AIAA Journal 1, 2487–2490 (1963).zbMATHCrossRefGoogle Scholar
  180. [5-272]
    Wang, H. E. und S. T. Chu: Variable-lift re-entry at superorbital and orbital speeds. AIAA Journal 1, 1047–1055 (1963).CrossRefGoogle Scholar
  181. [5-273]
    Wingrove, R. C.: Survey of atmosphere re-entry guidance and control methods. AIAA Journal 1, 2019–2029 (1963) und NASA Tech. Rep. R. 151 (1963).Google Scholar
  182. [5-274]
    Broglio, L.: A general theory on space and re-entry trajectories. AIAA Journal 2, 1774–1781 (1964).zbMATHCrossRefGoogle Scholar
  183. [5-275]
    Brunn, W.: Abstiegsbahnen für Raumflugkörper aus einer erdnahen Umlaufbahn. Jahrbuch 1964 der WGLR, S. 253–262.Google Scholar
  184. [5-276]
    Overesch, W.: Untersuchungen zum Problem des Wiedereintritts von Raumflugkörpern mit aerodynamischem Auftrieb. Jahrbuch 1964 der WGLR, S. 263–271.Google Scholar
  185. [5-277]
    Citron, S. J. und T. C. Meir: An analytic solution for entry into planetary atmospheres. AIAA Journal 3, 470–475 (1965).zbMATHCrossRefGoogle Scholar
  186. [5-278]
    Loh, W. H. T.: Extension of second-order theory of entry mechanics to oscillatory solutions. AIAA Journal 3, 1688–1691 (1965).CrossRefGoogle Scholar
  187. [5-279]
    Smith, R. L.: Dynamics of an unusual spinning re-entry body. J. Spacecraft 2, 895–901 (1965).CrossRefGoogle Scholar
  188. [5-280]
    Spielberg, I. N. und C. B. Cohen: Janus: a manned orbital spacecraft with staged re-entry. J. Spacecraft 2, 531–536 (1965).CrossRefGoogle Scholar
  189. [5-281]
    Wang, H. E.: Motion of re-entry vehicles during constant-altitude glide. AIAA Journal 3, 1346–1348 (1965).CrossRefGoogle Scholar
  190. [5-301]
    Spitzer, L. jr.: Perturbations of a satellite orbit. J. Brit. Interplanet. Soc. 9, 131–136 (1950).Google Scholar
  191. [5-302]
    Krause, H. G. L.: Die Säkularstörungen einer Außenstationsbahn. III. Kongr. Internat. Astronaut. Stuttgart, 1952, S. 162–173.Google Scholar
  192. [5-303]
    Schütte, K.: Die Bahnbestimmung aus dem Vektor der Bahngeschwindigkeit und der Einfluß einer Änderung desselben auf die Bahnelemente. IV. Kongr. Internat. Astronaut. Zürich, 1953, S. 89–102 und Weltraumfahrt 4, 98–107 (1953), 5, 13–20 (1954).Google Scholar
  193. [5-304]
    Krause, H. G. L.: Die säkularen und periodischen Störungen der Bahn eines künstlichen Erdsatelliten. VII. Kongr. Internat. Astronaut. Rom, 1956, S. 523–585.Google Scholar
  194. [5-305]
    Kooy, J. M. J.: On the application of the method of variation of elliptic orbit elements in case of a satellite vehicle. Astronaut. Acta 3, 179–214 (1957) und VII. Kongr. Internat. Astronaut. Rom, 1956, S. 705–739.Google Scholar
  195. [5-306]
    Roberson, R. E.: Orbital behavior of earth satellites. J. Franklin Inst. 264, 181–201, 269–285 ( 1957 I I ).Google Scholar
  196. [5-307]
    Gedeon, G. S.: Orbital mechanics of satellites. Adv. in Astronaut. Sci., Bd. 3, S. 19/1–33 (1958).Google Scholar
  197. [5-308]
    Herrick, S. und R. M. L. Baker jr.: Recent advances in astrodynamics. ARS Journal 28, 649–654 (1958).Google Scholar
  198. [5-309]
    King-Hele, I. G. und R. H. Merson: Satellite orbits in theory and practice. J. Brit. Interplanet. Soc. 16, 446–471 (1958).Google Scholar
  199. [5-310]
    Perkins, F. M.: An analytic solution for flight time of satellites in eccentric and circular orbits. Astronaut. Acta 4, 113–134 (1958).Google Scholar
  200. [5-311]
    Vertregt, M.: Die Bahnbestimmung aus dem Vektor der Bahngeschwindigkeit. Astronaut. Acta 4, 135–137 (1958).Google Scholar
  201. [5-312]
    Gedeon, G. S.: Kinematics of orbital motion. Adv. in Astronaut. Sci., Bd. 7, S. 87–98 (1960).Google Scholar
  202. [5-313]
    Gröbner, W. und F. Cap: Perturbation theory of celestial mechanics using Lie series. XI. Kongr. Internat. Astronaut. Stockholm, 1960, S. 348–350.Google Scholar
  203. [5-314]
    Herrick, S.: Observation requirement for precision orbit determination. In: N. J. Hopf und W. G. Vincenti (Herausg.): Aeronautics and Astronautics, Proc. Durand Centennial Conf., S. 417–434. New York, 1960.Google Scholar
  204. [5-315]
    Lanzano, P.: Application of lunar theory to the motion of satellite. Adv. in Astronaut. Sci., Bd. 6, S. 507–523 (1960).Google Scholar
  205. [5-316]
    Weirauch, R. F.: On the accuracy of an elliptic orbit determination. IX. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. I, S. 377–384.Google Scholar
  206. [5-317]
    Kislik, M. D.: The motion of an artificial satellite in the normal gravitational field of the earth. Artificial Earth Satellites 4, 183–201 (1961).Google Scholar
  207. [5-318]
    Lur’e, A. I.: Equations of disturbed motion in the Kepler problem. Artificial Earth Satellites 4, 288–291 (1961).Google Scholar
  208. [5-319]
    Spiess, O. R.: Two notes in orbit theory. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 121–130.Google Scholar
  209. [5-320]
    Arcese, A.: The importance of independent estimators in predicting orbital elements. J. Aero. Sci. 29, 1001–1002 (1962).Google Scholar
  210. [5-320a]
    Dierstein, R.: Bahnen im Schwerefeld. WGL-Lehrgang für Raumfahrttechnik (München 1962) Bd. II,15–1/24.Google Scholar
  211. [5-321]
    Mitǎ, M. M.: Sur la possibilité de réalisation d’un vaisseau orbital stationnaire au-dessus d’un point non situé sur l’équateur terrestre. XIII. Kongr. Internat. Astronaut. Varna, 1962, Bd. II, S. 555–570.Google Scholar
  212. [5-321a]
    Schmidt, W.: Bahnstörungen. WGL-Lehrgang für Raumfahrttechnik (München 1962) Bd. II, 17–1/18.Google Scholar
  213. [5-322]
    Thelan, H. T.: Computation of satellite orbits by the Hansen method as modified by Musen. NASA TR 147 (1962).Google Scholar
  214. [5-323]
    Traenkle, C. A.: Generalization and applications of the Keplerian time equation. Z. Flugwiss. 10, 306–314 (1962).zbMATHGoogle Scholar
  215. [5-324]
    Wen, Li Shu: Differential expressions for nearly rectilinear and rectilinear closed orbits. J. Aero. Sci. 29, 1102–1104 (1962).zbMATHGoogle Scholar
  216. [5-325]
    Wen, Li Shu: A unified treatment of „variation of parameters“and „differential expressions“methods in trajectory prediction and error analysis. J. Aero. Sci. 29, 61–66, 120 (1962).zbMATHGoogle Scholar
  217. [5-326]
    Wong, P.: Nonsingular variation of parameter equations for computation of space trajectories. ARS Journal 32, 264–265 (1962).zbMATHGoogle Scholar
  218. [5-327]
    El’yasberg, P. E.: Determination of orbits from two positions. Artificial Earth Satellites 13, 3–24 (1963).Google Scholar
  219. [5-328]
    Haviland, R. P. und C. M. House: Nonequatorial launching to equatorial orbits and general nonplanar launching. AIAA Journal 1, 1336–1342 (1963).CrossRefGoogle Scholar
  220. [5-329]
    Kislik, M. D.: An analysis of the integrals of the equations of motion of an artificial satellite in the normal gravitational field of the earth. Artificial Earth Satellites 13, 25–55 (1963).Google Scholar
  221. [5-330]
    Lidov, M. L.: Evolution of the orbits of artificial satellites of planets as effected by gravitational perturbation from external bodies. AIAA Journal 1, 1985–2002 (1963).zbMATHCrossRefGoogle Scholar
  222. [5-331]
    Beckwith, R. E.: Approximate distribution of nearly circular orbits. AIAA Journal 2, 913–916 (1964).zbMATHCrossRefGoogle Scholar
  223. [5-332]
    Bell, P. 0.: Orbit determination by angular measurements. AIAA Journal 2, 1862–1864 (1964).CrossRefGoogle Scholar
  224. [5-333]
    Chebotarew, G. A.: Motion of an artificial earth satellite in an orbit of small eccentricity. AIAA Journal 2, 203–208 (1964).CrossRefGoogle Scholar
  225. [5-334]
    Danby, J. M. A.: Matrix methods in the calculation and analysis of orbits. AIAA Journal 2, 13–16 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  226. [5-335]
    Danby, J. M. A.: The matrizant of Keplerian motion. AIAA Journal 2, 16–19 (1964).MathSciNetCrossRefGoogle Scholar
  227. [5-336]
    Lubowe, A. G.: High accuracy orbit prediction from node to node Astronaut. Acta 10, 253–261 (1964).MathSciNetGoogle Scholar
  228. [5-336a]
    Nigam, R. C.: Orbital aspects of deployment of satellites. J. Astronaut. Sci. 11, 37–45 (1964).MathSciNetGoogle Scholar
  229. [5-337]
    Schröter, W.: Über die Bahnvoraussage von Erdsatelliten. Raumfahrtforschung 8, 10–16 (1964).Google Scholar
  230. [5-338]
    Lorell, J.: Long term behavior of artificial satellite orbits due to third-body perturbations. J. Astronaut. Sci. 12, 142–149 (1965).Google Scholar
  231. [5-339]
    Musen, P.: On the high order effects in the methods of Krylov-Bogoliubov and Poincaré. J. Astronaut. Sci. 12, 129–134 (1965).Google Scholar
  232. [5-401]
    Blitzer, L. u. a.: Perturbations of a satellite’s orbit due to the earth’s oblateness. J. Appl. Phys. 27, 1141–1149 (1956) und 28, 279, 1362 (1957).zbMATHGoogle Scholar
  233. [5-402]
    Allen, W. A.: Effect on a rocket of the oblateness of a planet. ARS Journal 30, 623–627 (1960).zbMATHGoogle Scholar
  234. [5-403]
    Anthony, M. L. u. a.: Escape from an oblate planet. Adv. in Astronaut. Sci., Bd. 7, S. 175–194 (1960).Google Scholar
  235. [5-404]
    Geyling, F. T.: Satellite perturbations from extraterrestrial gravitation and radiation pressure. J. Franklin Inst. 269, 375–407 ( 1960 I ).Google Scholar
  236. [5-405]
    Hall, N. S. und H. F. Gawlowicz: The oblatory perturbations of satellite orbits. Adv. in Astronaut. Sci., Bd. 6, S. 415–446 (1960).Google Scholar
  237. [5-406]
    Petty, C. M. und J. V. Breakwell: Satellite orbits about a planet with rotational symmetry. J. Franklin Inst. 270, 259–282 ( 1960 I I ).Google Scholar
  238. [5-407]
    Anthony, M. L. und G. E. Fosdick: Satellite motions about an oblate planet. J. Aero. Sci. 28, 789–802 (1961) und ARS Journal 31, 1225–1232 (1961).zbMATHGoogle Scholar
  239. [5-408]
    King-Hele, D. G.: The effect of atmospheric oblateness on a satellite orbit. Astronaut. Acta 7, 390–405 (1961).Google Scholar
  240. [5-409]
    Mersman, W. A.: Theory of the secular variations in the orbit of a satellite of an oblate planet. NASA Tech. Rep. R-99 (1961).Google Scholar
  241. [5-410]
    Michielsen, H. F.: The effects of earth’s sectorial harmonics on a stationary satellite. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 216–227.Google Scholar
  242. [5-411]
    Moc, M. M. und E. E. Karp: Effect of earth oblateness on the anomalistic period of a satellite. ARS Journal 31, 1462–1464 (1961).Google Scholar
  243. [5-412]
    Proskurin, V. F. und Y. V. Batrakov: Perturbations of the first order in the motion of artificial satellites, caused by flattening of the earth. Artificial Earth Satellites 3, 46–55 (1961).Google Scholar
  244. [5-413]
    Sarychew, V. A.: Influence of the flattening of the earth on the motion of an artificial earth satellite. Artificial Earth Satellites 6, 1–9 (1961).Google Scholar
  245. [5-414]
    Blitzer, L.: Synchronous and resonant satellite orbits associated with equatorial ellipticity. ARS Journal 32, 1016–1019 (1962).zbMATHGoogle Scholar
  246. [5-415]
    Blitzer, L.: Circular orbits in an axially symmetric gravitational field. ARS Journal 32, 1102 (1962).zbMATHGoogle Scholar
  247. [5-416]
    Brenner, J. L.: The equatorial orbit of a near earth satellite. ARS Journal 32, 1560–1563 (1962).MathSciNetzbMATHGoogle Scholar
  248. [5-417]
    Frick, R. H. und T. B. Garber: Perturbations of a synchronous satellite due to triaxiality of the earth. J. Aero. Sci. 29, 1105–1111, 1114 (1962).Google Scholar
  249. [5-418]
    Lee, V. A.: Atmosphere oblateness correction factor for circular satellite orbits. ARS Journal 32, 102–103 (1962).Google Scholar
  250. [5-419]
    Lorell, J. und J. Anderson: Precession rates for an artificial satellite. XIII. Kongr. Internat. Astronaut. Varna, 1962, Bd. I, S. 451–461.Google Scholar
  251. [5-420]
    Mersman, W. A.: The critical inclination problem in satellite orbit theory. NASA Tech. Rep. R-148 (1962).Google Scholar
  252. [5-421]
    Sauer, C. G. jr.: Perturbations of a hyperbolic orbit by an oblate planet. ARS Journal 32, 714–717 (1962).zbMATHGoogle Scholar
  253. [5-422]
    Sturms, F. M. jr.: Nodal period for a circular earth satellite. ARS Journal 32, 1037–1039 (1962).zbMATHGoogle Scholar
  254. [5-423]
    Vries, de, J. P.: The sun’s perturbing effect on motion near a triangular Lagrange point. XIII. Kongr. Internat. Astronaut. Varna, 1962, Bd. I, S. 432–450.Google Scholar
  255. [5-424]
    Beletzkii, V. V.: Orbit of an equatorial earth satellite. Artificial Earth Satellites 13, 56–64 (1963).Google Scholar
  256. [5-425]
    Claus, A. J. und A. G. Lubowe: A high accuracy perturbation method with direct application to communication satellite orbit prediction. Astronaut. Acta 9, 275–301 (1963).zbMATHGoogle Scholar
  257. [5-426]
    Escobal, P. R.: Rise and set time of a satellite about an oblate planet. AIAA Journal 1, 2306–2310 (1963).zbMATHCrossRefGoogle Scholar
  258. [5-427]
    Kalil, F.: Minimum altitude variation orbits about an oblate planet. AIAA Journal 1, 1655–1657 (1963).zbMATHCrossRefGoogle Scholar
  259. [5-428]
    Kalil, F. und F. Martikan: Derivation of nodal period of an earth satellite and comparisons of several first-order secular oblateness results. AIAA Journal 1, 2041–2046 (1963).zbMATHCrossRefGoogle Scholar
  260. [5-429]
    Perkins, F. M.: Flight mechanics of the 24-hour satellite. AIAA Journal 1, 848–851 (1963).zbMATHCrossRefGoogle Scholar
  261. [5-430]
    Geyling, F. T.: Closed-form coordinate perturbations of elliptical orbits due to oblateness. Astronaut. Acta 11, 196–201 (1965).zbMATHGoogle Scholar
  262. [5-431]
    Lubowe, A. G.: Application of Lagrange’s planetary equations to orbits with low eccentricities, or low inclination, or both. J. Astronaut. Sci. 12, 7–17 (1965).Google Scholar
  263. [5-501]
    Petersen, N. V.: Lifetimes of satellites in near-circular and elliptic orbits. ARS Journal 26, 341–351, 368 (1956) und VII. Kongr. Internat. Astronaut. Rom, 1956, S. 789–810.Google Scholar
  264. [5-502]
    Henry, I. G.: Lifetimes of artificial satellites of the earth. ARS Journal 27, 21–24 (1957).Google Scholar
  265. [5-503]
    Casei, C. und V. Giavoto: Sul tempo di vita dei satelliti artificiali, IX. Kongr. Internat. Astronaut. Amsterdam, 1958, Bd. I, S. 343–358.Google Scholar
  266. [5-504]
    Molitz, H.: Einfluß des Luftwiderstandes auf die Bewegung von Satelliten. Wehrtech. Monatshefte 55, 593–607 (1958).Google Scholar
  267. [5-505]
    Nonweiler, T. R. P.: Perturbation of elliptic orbits by atmospheric contact. J. Brit. Interplanet. Soc. 16, 368–379 (1958).Google Scholar
  268. [5-506]
    Peterson, L. N.: Motion of a satellite with friction. ARS Journal 28, 750752 (1958).Google Scholar
  269. [5-507]
    Roberson, R. E.: Effect of air drag on elliptic satellite orbits. ARS Journal 28, 90–96 (1958).Google Scholar
  270. [5-508]
    Roberson, R. E.: Air drag effect on a satellite orbit described by difference equations in the revolution number. Quart. Appl. Math. 26, 131–136 (1958).MathSciNetGoogle Scholar
  271. [5-509]
    Williams, H. E.: The effect of drag on elliptic orbits. Adv. in Astronaut. Sci., Bd. 3, S. 35/1–10 (1958).Google Scholar
  272. [5-510]
    Baker, R. M. L. jr.: Application of astronomical perturbation techniques to the return of space vehicles. ARS Journal 29, 207–211 (1959).Google Scholar
  273. [5-511]
    Low, G. M.: Nearly circular transfer trajectories for descending satellites. NASA Tech. Rep. R-3 (1959).Google Scholar
  274. [5-512]
    Michielsen, H. F.: Orbit decay and prediction of the motion of artificial satellites. Adv. in Astronaut. Sci., Bd. 4, S. 255–310 (1959).Google Scholar
  275. [5-513]
    Rowell, L. N. und M. C. Smith: Secular variation in the inclination of the orbit of the earth satellite ( 1957 /3) and air drag. X. Kongr. Internat. Astronaut. London, 1959, Bd. I, S. 225–227.Google Scholar
  276. [5-514]
    Sterne, Th. E.: Effect of the rotation of a planetary atmosphere upon the orbit of a close satellite. ARS Journal 29, 777–782 (1959).Google Scholar
  277. [5-515]
    Gedeon, G. S.: Determination of the characteristics of rapidly decaying orbits. Adv. in Astronaut. Sci., Bd. 6, S. 458–472 (1960).Google Scholar
  278. [5-516]
    Batrakov, Yu. V. und V. P. Proskurin: Perturbations in the orbits of artificial satellites caused by air resistance. Artificial Earth Satellites 3, 56–66 (1961).Google Scholar
  279. [5-517]
    Braunbeck, W.: Das Satelliten-Paradoxon. Weltraumfahrt 12, 138–140 (1961).Google Scholar
  280. [5-518]
    El’yasberg, P. E.: Secular variations in orbit element as a function of air resistance. Artificial Earth Satellites 3, 76–84 (1961).Google Scholar
  281. [5-519]
    Kovalevsky, J.: Aspects analytiques du problème des perturbations d’un satellite artificiel. Astronaut. Acta 7, 376–389 (1961).MathSciNetGoogle Scholar
  282. [5-520]
    Vincent, Th. L.: Satellite life duration. ARS Journal 31, 1015–1018 (1961).Google Scholar
  283. [5-521]
    Billik, B.: Survey of current literature on satellite lifetimes. ARS Journal 32, 1641–1650 (1962).zbMATHGoogle Scholar
  284. [5-522]
    Crisp, J. D. C.: The dynamics of supercircular multiple-pass atmospheric braking. Astronaut. Acta 8, 1–27 (1962).Google Scholar
  285. [5-523]
    Karrenberg, H. K. u. a.: Variation of satellite position with uncertainities in the mean atmospheric density. ARS Journal 32, 576–582 (1962).zbMATHGoogle Scholar
  286. [5-524]
    Kork, J.: Satellite lifetimes in elliptic orbits. J. Aero. Sci. 29, 1273–1290, 1299 (1962).Google Scholar
  287. [5-525]
    Parsons, W. D.: Orbit decay characteristics due to drag. ARS Journal 32, 1876–1881 (1962).zbMATHGoogle Scholar
  288. [5-526]
    Poor, J. G. and R. W. Dix: Vehicle dynamics considerations at parabolic velocities. ARS Journal 32, 1888–1891 (1962).Google Scholar
  289. [5-527]
    Brundin, C. L.: Effects of charged particles on the motion of an earth satellite. AIAA Journal 1, 2529–2538 (1963).CrossRefGoogle Scholar
  290. [5-528]
    Citron, S. J.: Satellite lifetimes under the influence of continuous thrust, atmospheric drag and planet oblateness. AIAA Journal 1, 1355–1360 (1963).CrossRefGoogle Scholar
  291. [5-529]
    Kalil, F.: Effect of an oblate rotating atmosphere on the eccentricity, semi-major axis, and period of a close earth satellite. AIAA Journal 1, 1872–1878 (1963).zbMATHCrossRefGoogle Scholar
  292. [5-530]
    Abdelkader, M. A.: Approximate orbits of resisted satellites. Astronaut. Acta 10, 328–338 (1964).MathSciNetGoogle Scholar
  293. [5-531]
    Denham, W. F. and A. F. Bryson jr.: Optimal programming problems with inequality constraints II: Solution by steepest-ascent. AIAA Journal 2, 25–34 (1964).MathSciNetCrossRefGoogle Scholar
  294. [5-532]
    Lubowe, A. G.: Drag perturbations in low eccentricity orbits. Astronaut. Acta 11, 189–195 (1965).Google Scholar
  295. [5-601]
    Lawden, D. F.: Entry into circular orbits —1. J. Brit. Interplanet. Soc. 10, 5–17 (1951).Google Scholar
  296. [5-602]
    Lawden, D. F.: Inter-orbital transfer of a rocket. III. Kongr. Internat. Astronaut. Stuttgart, 1952, S. 146–161.Google Scholar
  297. [5-603]
    Lawden, D. F.: The calculation of orbits. J. Brit. Interplanet. Soc. 14, 204–214 (1955).Google Scholar
  298. [5-604]
    Ehricke, K. A.: The satelloid. Astronaut. Acta 2, 63–100 (1956).Google Scholar
  299. [5-605]
    Lawden, D. F.: Transfer between circular orbits. ARS Journal 26, 555–558 (1956).Google Scholar
  300. [5-606]
    Fried, B. D.: On the powered flight trajectory of an earth satellite. ARS Journal 27, 641–643 (1957).Google Scholar
  301. [5-606a]
    Benney, D. J.: Escape from a circular orbit using tangential thrust. ARS Journal 28, 167–169 (1958).Google Scholar
  302. [5-607]
    Dobrowalski, A.: Micrithrust maneuver capabilities. Adv. in Astronaut. Sci., Bd. 3, S. 18/1–14 (1958).Google Scholar
  303. [5-608]
    Kelber, C. C.: Next: Maneuverable satellites. Adv. in Astronaut. Sci., Bd. 3, S. 17/1–18 (1958).Google Scholar
  304. [5-609]
    Lawden, D. F.: Optimal escape from a circular orbit. Astronaut. Acta 4, 218–233 (1958).Google Scholar
  305. [5-610]
    Vargo, L. G.: Optimal transfer between coplanar terminals in a gravitational field. Adv. in Astronaut. Sci., Bd. 3, S. 20/1–9 (1958).Google Scholar
  306. [5-611]
    Perkins, F. M.: Flight mechanics of low-thrust spacecraft. J. Aero. Sci. 26, 291–297 (1959).zbMATHGoogle Scholar
  307. [5-612]
    Traenkle, C. A.: Optimal programming and control of satellite orbits. Z. Flugwiss. 7, 305–313 (1959).Google Scholar
  308. [5-613]
    Brunk, W. E.: Transfer between noncoplanar orbits without minimum bvelocity requirements. Adv. in Astronaut. Sci., Bd. 7, S. 111–124 (1960).Google Scholar
  309. [5-614]
    DeBra, D. B. and B. H. Gundel: Circularization of elliptic orbits. Adv. in Astronaut. Sci., Bd. 6, S. 536–555 (1960).Google Scholar
  310. [5-615]
    Godal, Th.: Conditions of compatibility of terminal positions and velocities. XI. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. I, S. 40 11.Google Scholar
  311. [5-616]
    Lawden, D. F.: Optimal programme for correctional manoeuvres. Astronaut. Acta 6, 195–205 (1960).Google Scholar
  312. [5-617]
    Long, R. S.: Transfer between non-coplanar elliptical orbits. Astronaut. Acta 6, 167–178 (1960).Google Scholar
  313. [5-618]
    Munick, H. u. a.: Analytic solutions to several optimum orbit transfer problems. XI. Kongr. Internat. Astronaut. Stockholm, 1960, Bd. I, S. 423430.Google Scholar
  314. [5-619]
    Rider, L.: Ascent from inner circular to outer co-planar elliptic orbits. ARS Journal 30, 254–258 (1960).zbMATHGoogle Scholar
  315. [5-620]
    Roberson, R. E.: Path control for satellite rendezvous. Adv. in Astronaut. Sci., Bd. 6, S. 192–228 (1960).Google Scholar
  316. [5-621]
    Soule, P. W.: Rendezvous with satellites in elliptical orbits with low eccentricity. Adv. in Astronaut. Sci., Bd. 7, S. 138–147 (1960).Google Scholar
  317. [5-622]
    Ting, Lu: Optimum orbital transfer by several impulses. Astronaut. Acta 6, 256–265 (1960).Google Scholar
  318. [5-623]
    Altman, S. P. and J. S. Pistiner: Hodograph analysis of the orbital transfer problem for coplanar nonaligned elliptical orbits. ARS Journal 31, 1217–1225 (1961).zbMATHGoogle Scholar
  319. [5-624]
    Altman, S. P. and J. S. Pistiner: A new orbital rendezvous guidance concept and its mechanization. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 254–272.Google Scholar
  320. [5-625]
    Breakwell, J. V. u. a.: Researches in interplanetary transfer. ARS Journal 31, 201–208 (1961).Google Scholar
  321. [5-626]
    Bruce, R. W.: Satellite orbit sustaining techniques. ARS Journal 31, 1237–1241 (1961).Google Scholar
  322. [5-627]
    Carstens, J. P. and T. N. Edelbaum: Optimum maneuvers for launching satellites into circular orbits of arbitrary radius and inclination. ARS Journal 31, 943–949 (1961).zbMATHGoogle Scholar
  323. [5-628]
    Faulders, C. R.: Minimum time steering programs for orbital transfer with low-thrust rockets. Astronaut. Acta 7, 35–49 (1961).MathSciNetGoogle Scholar
  324. [5-629]
    Haynes, G. W.: The calculus of variations approach to the general optimum impulsive transfer problem. XII. Kongr. Internat. Astronaut. Washington, D. C., 1961, Bd. I, S. 299–316.Google Scholar
  325. [5-630]
    Houbolt, J. C.: Problems and potentialities of space rendezvous. Astronaut. Acta 7, 406–429 (1961).Google Scholar
  326. [5-630a]
    Lass, H. and J. Lorell: Low acceleration takeoff from a satellite orbit. ARS Journal 31, 24–28 (1961).zbMATHGoogle Scholar
  327. [5-631]
    Nason, M. L.: A terminal guidance law wich achieves collision based on Coriolis-balance techniques. Adv. in Astronaut. Sci., Bd. 8, S. 439–461 (1961).Google Scholar
  328. [5-632]
    Smith, F. T.: Optimization of multistage orbit transfer processes by dynamic programming. ARS Journal 31, 1553–1559 (1961).zbMATHGoogle Scholar
  329. [5-633]
    Traenkle, C. A.: Layout of satellite ferry operation. Z. Flugwiss. 9, 334–341 (1961).Google Scholar
  330. [5-634]
    Traenkle, C. A.: Ferry operation with elliptic satellite orbits. Z. Flugwiss. 9, 407–417 (1961).zbMATHGoogle Scholar
  331. [5-635]
    Young, J. W. u. a.: Guidance of a space vehicle to a desired point on the earth’s surface. Adv. in Astronaut. Sci., Bd. 8, 5. 46–474 (1961).Google Scholar
  332. [5-635a]
    Dierstein, R.: Aufstiegs- and Übergangsbahnen. WGL-Lehrgang fur Raumfahrttechnik (München 1962) Bd. II, 16–1/22.Google Scholar
  333. [5-636]
    Eckel, K.: Optimum transfer between non-coplanar elliptical orbits. Astronaut. Acta 8, 177–192 (1962).Google Scholar
  334. [5-637]
    Fosdick, G. E. and M. L. Anthony: Three-dimensional pulse optimization for vehicles desorbiting from circular orbits. Astronaut. Acta 8, 343–375 (1962).Google Scholar
  335. [5-638]
    Gobetz, F. W.: Optimal variable-thrust transfer of a power-limited rocket between neighboring circular orbits. ARS Journal 32, 339–343 (1962).Google Scholar
  336. [5-639]
    Horner, J. M.: Optimum two-impulse transfer between arbitrary coplanar terminals. ARS Journal 32, 95–96 (1962).Google Scholar
  337. [5-640]
    Jantscher, H. N. u. a.: Minimum energy analysis for the general problem of rendezvous in earth orbital space. ARS Journal 32, 292–294 (1962).zbMATHGoogle Scholar
  338. [5-641]
    Jurovics, S. A. and J. E. McIntyre: The adjoint method and its application to trajectory optimization. ARS Journal 32, 1354–1358 (1962).zbMATHGoogle Scholar
  339. [5-642]
    Lass, H. and C. B. Solloway: Motion of a satellite under the influence of a constant normal thrust. ARS Journal 32, 97–100 (1962).zbMATHGoogle Scholar
  340. [5-643]
    Lawden, D. F.: Optimal intermediate-thrust arcs in a gravitational field. Astronaut. Acta 8, 106–123 (1962).Google Scholar
  341. [5-644]
    Lieberman, S. I.: Rendezvous acceptability regions based on energy considerations. ARS Journal 32, 287–290 (1962).zbMATHGoogle Scholar
  342. [5-645]
    London, H. S.: Change of satellite orbit plane by aerodynamic maneuvering. J. Aero. Sci. 29, 323–332 (1962).zbMATHGoogle Scholar
  343. [5-646]
    Melbourne, W. G. and C. G. Sauer jr.: Optimum thrust programs for power-limited propulsion systems. Astronaut. Acta 8, 205–227 (1962).Google Scholar
  344. [5-647]
    Munick, H.: Optimum orbital transfer using N-impulses. ARS Journal 32, 1347–1350 (1962).zbMATHGoogle Scholar
  345. [5-648]
    Regan, F. J.: Comment on an orbital hodograph analysis by Altman and Pistiner. ARS Journal 32, 113–114 (1962).Google Scholar
  346. [5-649]
    Roberson, R. E.: An intermittent orbit sustaining technique. Astronaut. Acta 8, 42–48 (1962).Google Scholar
  347. [5-650]
    Weiss, D. C.: Maneuvring technique for changing the plane of circular orbits with minimum fuel expenditure. J. Aero. Sci. 29, 368–369 (1962).Google Scholar
  348. [5-651]
    Anthony, M. L. and G. E. Fosdick: Three-dimensional pulse optimization for vehicles disorbiting from elliptical orbits. Astronaut. Acta 9, 81–106 (1963).Google Scholar
  349. [5-652]
    Barrar, R. B.: An analytic proof that the Hohmann-type transfer is the true minimum two-impulse transfer. Astronaut. Acta 9, 1–11 (1963).Google Scholar
  350. [5-653]
    Barrar, R. B.: Two-impulse transfer vs. one-impulse transfer: analytic theory. AIAA Journal 1, 65–68 (1963).zbMATHCrossRefGoogle Scholar
  351. [5-654]
    Billik, B. H. and C. M. Price: Preferred schemes for multiple orbit transfer. AIAA Journal 1, 1858–1861 (1963).CrossRefGoogle Scholar
  352. [5-655]
    Bryson, A. E. jr. u. a.: Optimal programming problems with inequality constraints. I: Necessary conditions for extremal solutions. AIAA Journal 1, 2544–2550 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  353. [5-656]
    Eckel, K.: Optimum transfer in a central force field with n impulses. Astronaut. Acta 9, 302–324 (1963).Google Scholar
  354. [5-656a]
    Eckel, K.: Numerical solutions of non-coaxial optimum transfer problems. J. Astronaut. Sci. 10, 82–92 (1963).Google Scholar
  355. [5-656b]
    Fimple, W. R.: An improved theory of the use of high- and low-thrust propulsion in combination. J. Astronaut. Sci. 10, 107–113 (1963).Google Scholar
  356. [5-657]
    Gobetz, F. W.: Optimum transfers between hyperbolic asymptotes. AIAA Journal 1, 2034–2041 (1963).CrossRefGoogle Scholar
  357. [5-658]
    Hanson, J. N.: A simple method for approximating the optimal trajectory. AIAA Journal 1, 1936–1938 (1963).MathSciNetCrossRefGoogle Scholar
  358. [5-659]
    Hinz, H. K.: Optimal low-thrust near-circular orbital transfer. AIAA Journal 1, 1367–1371 (1963).CrossRefGoogle Scholar
  359. [5-660]
    Kelley, H. J.: Singular extremals in Lawden’s problem of optimal rocket flight. AIAA Journal 1, 1578–1580 (1963).CrossRefGoogle Scholar
  360. [5-661]
    Kooy, J. M. J.: On ascent guidance for rendezvous. Astronaut. Acta 9, 140–166 (1963).Google Scholar
  361. [5-662]
    McCue, G. A.: Optimum two-impulse orbital transfer and rendezvous between inclined elliptical orbits. AIAA Journal 1, 1865–1872 (1963).CrossRefGoogle Scholar
  362. [5-663]
    Moskowitz, S. E.: On the accuracy of approximate thrust steering schedules in optimal correctional maneuvers. Astronaut. Acta 9, 20–30 (1963).Google Scholar
  363. [5-664]
    Sconzo, P.: An astronomical approach to the problem of satellite rendezvous. Astronaut. Acta 9, 367–370 (1963).Google Scholar
  364. [5-665]
    Ting, Lu and M. Pierucci: Optimum launching of a satellite by two impulses of unequal specific impulse. Astronaut. Acta 9, 174–183 (1963).Google Scholar
  365. [5-666]
    Wang, K.: Minimum time transfer between coplanar, circular orbits by two impulses and the propulsion requirements. Astronaut. Acta 9, 12–19 (1963).Google Scholar
  366. [5-667]
    Zee, C.H.: Low-thrust oscillatory spiral trajectory. Astronaut. Acta 9, 201–207 (1963).Google Scholar
  367. [5-668]
    Zee, C.-H.: Low constant tangential thrust spiral trajectories. AIAA Journal 1, 1581–1583 (1963).zbMATHCrossRefGoogle Scholar
  368. [5-669]
    Zee, C.-H.: Effect of finite thrusting time in orbital maneuvers. AIAA Journal 1, 60–64 (1963).CrossRefGoogle Scholar
  369. [5-670]
    Auelmann, R. R.: Trajectories with constant normal force starting from a circular orbit. AIAA Journal 2, 561–563 (1964).zbMATHCrossRefGoogle Scholar
  370. [5-671]
    Billik, B. H.: Some optimal low-acceleration rendezvous maneuvers. AIAA Journal 2, 510–516 (1964).zbMATHCrossRefGoogle Scholar
  371. [5-672]
    Edelbaum, Th. N.: Optimum low-thrust rendezvous and station keeping. AIAA Journal 2, 1196–1201 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  372. [5-673]
    Grabin, C.: Docking dynamics for rigid-body spacecraft. AIAA Journal 2, 5–12 (1964).CrossRefGoogle Scholar
  373. [5-674]
    Hempel, P. und J. Tschauner: Über Beschleunigungsprogramme minimaler Übergangsenergie für das Rendezvous-Manöver. Astronaut. Acta 10, 221–237 (1964).Google Scholar
  374. [5-675]
    Lee, G.: An analysis of two-impulse orbital transfer. AIAA Journal 2, 1767–1773 (1964).zbMATHCrossRefGoogle Scholar
  375. [5-676]
    McGill, R. und P. Kenneth: Solution of variational problems by means of a generalized Newton-Raphson operator. AIAA Journal 2, 1761–1766 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  376. [5-677]
    Metzger, R.: Anwendung des Pontrjaginschen Maximumprinzips auf Rendezvousprobleme in der Raumfahrt. Jahrbuch 1964 der WGLR, S. 233–237.Google Scholar
  377. [5-677a]
    Peterson, E. L.: Methods and application of optimization techniques. AGARDograph 92 (Okt. 1964 ), S. 109–162.Google Scholar
  378. [5-677b]
    Smith, F. T.: The application of dynamic programming to orbit transfer processes. AGARDograph 92 (Okt. 1964 ), S. 22–78.Google Scholar
  379. [5-678]
    Tschauner, J. und P. Hempel: Optimale Beschleunigungsprogramme für das Rendezvous-Manöver. Astronaut. Acta 10, 296–307 (1964).Google Scholar
  380. [5-679]
    Vinh, N. X.: A property of cotangential elliptical transfer orbits. AIAA Journal 2, 1841–1844 (1964).zbMATHCrossRefGoogle Scholar
  381. [5-680]
    Anthony, M. L. und F. T. Sasaki: Rendezvous problem for nearly circular orbits. AIAA Journal 3, 1666–1673 (1965).CrossRefGoogle Scholar
  382. [5-681]
    Bruce, R. W.: Combined aerodynamic-propulsive orbital plane change maneuver. AIAA Journal 3, 1286–1289 (1965).CrossRefGoogle Scholar
  383. [5-682]
    Busemann, A.: Minimalprobleme der Luft- und Raumfahrt. Z. Flugwiss. 13, 401–411 (1965).Google Scholar
  384. [5-683]
    Conrad, D. A.: Minimum fuel closed loop translation. AIAA Journal 3, 952–954 (1965).CrossRefGoogle Scholar
  385. [5-684]
    Edelbaum, Th. N.: Optimum power-limited orbit transfer in strong gravity fields. AIAA Journal 3, 921–925 (1965).MathSciNetCrossRefGoogle Scholar
  386. [5-685]
    Johnson, D. P.: Perturbation solutions for low-thrust rocket trajectories. AIAA Journal 3, 1934–1936 (1965).CrossRefGoogle Scholar
  387. [5-685a]
    Marchai, C.: Transferts optimaux entre orbits elliptiques coplanaires (durée indifférente). Astronaut. Acta 11, 432–445 (1965).Google Scholar
  388. [5-685b]
    Marec, J.-P.: Transferts orbitaux économiques. Recherche Aérospatiale Nr. 105, 11–21 (1965).Google Scholar
  389. [5-685c]
    McCue, G. A. und D. F. Bender: Numerical investigation of minimum impulse orbital transfer. AIAA Journal 3, 2328–2334 (1965).CrossRefGoogle Scholar
  390. [5-686]
    Moyer, H. G.: Minimum impulse coplanar circle-ellipse transfer. AIAA Journal 3, 723–726 (1965).CrossRefGoogle Scholar
  391. [5-687]
    Pfeiffer, C. G.: A dynamic programming analysis of multiple guidance corrections of a trajectory. AIAA Journal 3, 1674–1681 (1965).CrossRefGoogle Scholar
  392. [5-687a]
    Pierucci, M.: Optimum orbital transfer by two impulses of unequal specific impulse. Astronaut. Acta 11, 268–270 (1965).Google Scholar
  393. [5-688]
    Robbins, H. M.: Optimality of intermediate-thrust arcs of rocket trajectories. AIAA Journal 3, 1094–1098 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  394. [5-689]
    Tschauner, J. und P. Hempel: Rendezvous zu einem in elliptischer Bahn umlaufenden Ziel. Astronaut. Acta 11, 104–109 (1965).zbMATHGoogle Scholar
  395. [5-689a]
    Tschauner, J.: Neue Darstellung des Rendezvous bei elliptischer Zielbahn. Astronaut. Acta 11, 312–321 (1965).zbMATHGoogle Scholar
  396. [5-690]
    Vaccaro, R. J. und M. J. Kirby: Rendezvous guidance of lifting aerospace vehicles. J. Spacecraft 2, 705–711 (1965).CrossRefGoogle Scholar
  397. [5-690a]
    de Veubeke, B. Fraeijs: Canonical transformations and the thrust — coast — thrust optimal transfer problem. Astronaut. Acta 11, 271–282 (1965).MathSciNetGoogle Scholar
  398. [5-691]
    Zehle, H.: Zur Berechnung von Abflugspiralen kleiner Schubbeschleunigung. Z. Flugwiss. 13, 385–387 (1965).zbMATHGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn GmbH, Braunschweig 1969

Authors and Affiliations

  • Hermann Stümke
    • 1
  1. 1.StuttgartDeutschland

Personalised recommendations